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Abstract. The theories of elasticity and fluid dynamics are two basic theories in continuum 

mechanics. Traditional continuum mechanics regards the motion of material element 

forming a continuum as the translational motion of rigid body, and the theorem of moment 

of momentum about an axis passing through the centroid of material element is added to 

describe the dynamics of the material elements of a continuum. Under the cognition, the 

gradient of displacement in the theory of elasticity is divided into symmetric and 

antisymmetric components known as the strain tensor and rotation tensor, respectively, and 

the gradient of velocity in the theory of fluid dynamics is divided into symmetric and 

antisymmetric components known as the strain rate tensor and rotation rate tensor. 

However, there are several questions in the theories of elasticity and fluid dynamics 

developed from above assumption: 1. The rigid body rotation termed in geometric 

relationships conflicts with the assumption of translational motion of material elements; 2. 

The constraint of compatibility conditions on displacement field (  + 0    u u ) 

is different from the property of displacement field (   0  u ), which may cause that 

the solutions to elasticity problems solved with displacement method are different from the 

solutions to elasticity problems solved with other methods; 3. The decomposition of 

gradient of displacement and velocity is inconsistent with the decomposition of vector 

fields which are often decomposed into divergence field and curl field; 4.The calculation 

of stress on an inclined plane is equivalent to denying the necessity of body force and 

inertial force in Cauchy’s equation of motion; 5. Stokes hypothesis is required in the theory 

of fluid dynamics to guarantee that the pressure derived from the fluid's constitutive 

relationship is equal to the thermodynamic pressure. The study re-establishes the theories 

of elasticity and fluid dynamics based on new dynamic hypotheses to replace current 



 

 

imperfect theories. In the new theories, it is assumed that the theorem of momentum is the 

only dynamic law that a continuum obeys, which describes the translational motion of 

deformable media. Under the hypothesis, a new dynamic equilibrium equation is proposed, 

stress tensor is an asymmetric tensor which can be described with the gradient of a vector, 

and strain and strain rate tensors are the gradient of displacement and velocity, respectively. 

The properties of force field in continuum can be obtained by the symmetry of the stress 

tensor and strain (rate) tensor. Based on the new dynamic hypotheses, the constitutive 

relationships for elastomer and Newtonian fluid are modified accordingly. The traditionally 

defined wave equation and Navier-Stokes equation are obtained from the new theories of 

elasticity and fluid dynamics, respectively. The new theory of elasticity does not require 

compatibility conditions, and the new theory of fluid dynamics does not require Stokes 

hypothesis. In the new theories, the curl of displacement and flow fields in continuums is 

no longer related to rigid body rotation. 

Keywords: Classical continuum mechanics; Stress state; Strain state; Elasticity; Fluid 

dynamics 

  



 

 

1. Introduction 

Continuum mechanics studies the motion, deformation and failure of deformed media 

such as fluids and solids under the continuum hypothesis, where real fluids and solids are 

considered to be perfectly continuous and are paid no attention to their molecular structure 

[1, 2, 3]. Continuum mechanics is the basis and framework of engineering science. With 

the continuous development of engineering and technology, continuum mechanics has been 

widely applied in aerospace [4, 5], information technology [6, 7], biomedical engineering 

[8, 9], micro/nano technology [10, 11, 12] and other fields. At the same time, the 

application of continuum mechanics in these fields promotes its own development. The 

development of theoretical research on the mechanical properties of continuous media is 

of great significance for the development of human civilization. 

At present, the community of mechanics generally believes that continuum mechanics 

is a branch of classical mechanics, and the motion of material elements constituting a 

continuum is the motion of particles, which can be described by Newton's three laws of 

motion or other mechanical principles related to and equivalent to them [1-3, 13-15]. 

Continuum hypothesis allows for the description of internal force acting on every given 

surface element in the form of a field and the use of powerful methods of calculus to 

describe the equilibrium of a free body with an infinitesimal volume in a continuum [1, 3]. 

In order to conveniently describe the force on the bounding surface of a free body and the 

equilibrium of the free body whose volume goes to zero under resultant force, the stress 

tensor is introduced into continuum mechanics [1-3, 13]. The stress tensor is shown to be 

a second-order symmetric tensor in classical continuum mechanics because the motion of 

nonzero-volume elements constituting continua is treated as the motion of particles, and 



 

 

the theorem of moment of momentum is applicable to describing the dynamics of material 

elements constituting a continuum [13, 14, 16]. 

In a continuum, strain or strain rate is what causes stress. For instance, strain causes 

stress to build up in an elastomer, and strain and strain rate cause stress to build up in a 

fluid. In continuum mechanics, the strain tensor and strain rate tensor are introduced to 

conveniently explain the constitutive relation of a variety of continua. The strain tensor and 

strain rate tensor are second-order symmetric tensors since the stress tensor is a second-

order symmetric tensor [13-16]. In the theory of elasticity, the symmetrical portion of the 

gradient of the displacement field is used to define the strain tensor, and geometric 

equations link the six strain components to the three displacements [15]. When the 

distribution of stress or strain in an elastomer is known, the strain tensor is thought to satisfy 

specific integrability conditions since strain only contains a portion of the information 

about the displacement field. As a result, the theory of elasticity introduces the 

compatibility requirements. In the theory of fluid dynamics, the strain rate is the symmetric 

part of the gradient of velocity filed [2]. Similar to the velocity field, the strain rate only 

contains some information about the velocity field, so the strain rate should also meet 

certain integrable conditions. However, as fluid dynamics focuses on the distribution of 

flow fields, fluid dynamics problems are often solved by solving Navier-Stokes equation. 

The integrable conditions are unnecessary for fluid dynamics researchers to take into 

account. 

The application of continuum mechanics, which is based on traditional dynamic 

assumptions has greatly promoted human understanding of the motion, deformation, and 

failure of continuum. Practice has proved that the achievements, such as the wave equation 



 

 

and Navier-Stokes equation, are undoubtedly correct. However, we can see that continuum 

mechanics still contains some inconsistencies. Taking transverse waves as an example, the 

equation for transverse waves can be derived from the theory of elasticity, however the 

theory of elasticity has difficulties in explaining transverse waves. Transverse wave is 

defined as the motion of all points on a wave oscillate along paths at right angles to the 

direction of the wave’s advance. In the theory of elasticity, Transverse waves are the 

superposition of the deformation and the rigid body rotation. Under the law of equivalence 

of shear stress derived from the conservation of moment of momentum, the element cannot 

rotate, which runs counter to the physical justification for the antisymmetric portion of the 

displacement gradient. At the same time, in fluid dynamics, there are difficulties in 

distinguishing between laminar flow and turbulence, and Stokes hypothesis is required 

when the pressure is determined from constitutive relation of fluid even though the cause 

of the viscous force has been identified by shear deformation. The study believes that the 

introduction of unsuitable dynamic hypothesis, the theorem of moment of momentum, is 

what causes the paradoxes in continuum mechanics. By introducing the theorem of moment 

of momentum about an axis running through the centroid of the material element the 

motion of material elements comprising a continuum is actually treated as rigid body 

translational motion in dynamics. Since continuum is a deformable body, continuum 

mechanics should develop a particle equilibrium equation according to the deformable 

body's properties. 

In order to more accurately characterize the motion and deformation of elastomers 

and fluids, the study intends to re-establish the theories of elasticity and fluid dynamics 

based on new dynamic hypothesis. For the new theories of elasticity and fluid dynamics, 



 

 

the compatibility conditions and Stokes hypothesis are no longer necessary, respectively. 

The displacement and flow fields in continuums is no longer related to rigid body rotation. 

The stress on an inclined plane is the directional derivative of a vector, which is named as 

the stress vector. The rest of the study is organized as follows. Firstly, the paradoxes in 

classical continuum mechanics are pointed out: 1. The constraint of deformation 

coordination on displacement field is different from the property of displacement field; 2. 

The constraint of the conservation of moment of momentum on shear stress is depend on 

the position where the stress is expanded; 3. The calculation of stress on an inclined plane 

denies the necessity of body force and inertial force in Cauchy’s equation of motion. Then, 

Newton's second law, which describes the dynamics of discrete particles, is extended to 

differential form. By examining the relationship between a vector field's characteristics and 

its gradient, the validity of the new differential form of Newton's second law is 

demonstrated, and that the stress tensor may be described using a vector's gradient is 

obtained. Finally, by correctly altering the constitutive relationships of the fluid and the 

elastomer, the theories of elasticity and fluid dynamics are constructed. The classic 

definition of the wave equation and the Navier-Stokes equation are obtained by expressing 

the equation of motion with displacement and velocity. The validity of the new theory of 

elasticity is verified by solving the problem of a wedge subjected to dead-weight and liquid 

pressure as an example. 

2. Paradoxes in classical continuum mechanics 

A proper theory has no contradictory statements and the conclusions drawn from the 

theory often do not change depending on the coordinate choice. In the section, some 

paradoxes in classical continuum mechanics are illustrated. 



 

 

2.1 The displacement field property of elastomer  

Based on the compatibility conditions, the displacement field of an elastomer satisfies 

the following relationship: 

  + 0    u u ,  (1) 

with u the displacement and ▽ the vector operator del. According to Equation (1), the 

displacement field is a vector with a third derivative. However, it is not difficult to prove 

that the Equation (1) changes the inherent properties of vector fields. Rewriting Equation 

(1), the following Equation is obtained: 

           u u .  (2) 

It is obtained from Equations (1) and (2) that   u  and   u  can be non-zero. This 

is inconsistent with the properties of vector fields. For a vector field with a second 

derivative, like displacement field,   u  and   u  are both zero. 

In the classical theory of elasticity, although local rigid body rotation is acknowledged, 

the deformation is only taken into account for the compatibility conditions. In order to 

ensure the compatibility conditions of elastomer, the symmetric and antisymmetric parts 

of the gradient of displacement should be both considered. Since the continuous partial 

derivatives of multivariate functions are independent of the order of differentiation, the 

displacement field satisfies the following equation [17]: 

   0   u ,  (3) 

u is a vector with a second derivative, which indicates that Equation (3) holds for an 

arbitrary vector with a second derivative. Therefore, Equation (3) should be the 

compatibility conditions followed by the theory of elasticity. 



 

 

2.2 Conservation of moment of momentum by expanding stress at different point 

The continuum mechanics regards the motion of material elements forming a 

continuum as the motion of particle. However, the introduce of the theorem of moment of 

momentum is actually to treat the motion of elements forming a continuum as rigid body 

translational motion. Here we examine the paradox arising from the introduction of 

conservation of moment of momentum. For classical continuum mechanics, the 

momentum conservation of continuum in the differential form is expressed by Cauchy’s 

equation of motion as follows: 

 = 0 F ,  (4) 

where, σ is the second-order stress tensor, F is the general body force which includes inertia 

force. According to the traditional interpretation of Cauchy's equation of motion, the force 

acting on a material element can be described as shown in Figure 1, where the stress is 

constant on any one of six surface elements. Equation (4) shows that a material element's 

size is small enough for the change in stresses on the various boundary surfaces to be 

approximated linearly. Because Equation (4) is independent of coordinate selection, the 

change of stresses on the different boundary surfaces of a material element can be described 

by expanding stress at any point in the material element. Figure 1a and Figure 1b show the 

stresses on boundary surfaces by expanding stress at the centroid of material element and 

at the lower left corner of material element, respectively. 



 

 

 

Figure 1. Diagram of force on a material element. (a) stress is expanded at the centroid of 

material element, (b) stress is expanded at the lower left corner of material element 

 

When the stresses on boundary surfaces of material element are described by 

expanding stress at the centroid of material element, the moment of all the forces about an 

axis passing through the centroid of material element o and parallel to the z-axis is 

expressed as follows: 
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.  (5) 

In Equation (5), the absence of body moments is assumed because the body force does not 

produce torque around the center of material element. Equation (5) can be simplified as: 

  o xy yxM x y z      .  (6) 

Under the assumption that the material element moves as a particle, the moment of all the 

forces around the centroid of material element is zero. Thus, 

 yx xy  .  (7) 



 

 

With the similar method, the equivalence of shear stress is proven, and is thought to indicate 

that the stress tensor is symmetric. 

When the stresses on boundary surfaces of the material element are described by 

expanding stress at the lower left corner of material element, the moment of all forces about 

an axis passing through the centroid of material element o and parallel to the z-axis is 

written as: 
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Equation (8) can be simplified as: 

   1

2
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.  (9) 

In the traditional derivation of the angular momentum conservation of material element 

with the stress expanded at the lower left corner of material element, the second term on 

the right side of Equation (9) is regarded as the higher order term and is dropped [1], and 

Equation (7) is then obtained. It should be noted that dropping the second term on right 

side of Equation (9) violates both the derivation of equation of motion and the limit 

algorithm. The equilibrium of material element along x direction is expressed as: 
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which indicates that the resultant force acting on the material element and causing it to 

move is the higher-order term of stress. 

In actuality, the second term on right side of Equation (9) is a higher order infinity 



 

 

than the moment of inertia of the material element. The moment of material element about 

the axis z (Iz) is written as: 

     2 2
12zI x y x y z       ,  (11) 

with ρ the density of continuum. Therefore, in order to prevent the material element from 

rotating, the moment of the surface force acting on the material element relative to the 

centroid of the material element should be zero. Since the size of a material element is 

arbitrary, the following formulas hold when the moment of all forces about the selected 

axis is zero: 

 yx xy  ,  (12) 

 xy yx

x y

  


 
.  (13) 

According to Equations (12) and (13), shear stress on one surface of a material element is 

equivalent to shear stress on the opposite surface, which suggests that the conservation of 

moment of momentum requires the stress in continuum to be constant. The constraint on 

stress is inconsistent with Equation (7), and is in disagreement with the stress distribution 

shown in Cauchy's equation of motion. 

2.3 Calculation of stress on an inclined plane 

Explaining the strain on an inclined plane at a point involves a similar conflict. A 

tetrahedron with three faces oriented in the coordinate planes and an infinitesimal plane 

oriented in any direction is taken into consideration in order to compute the stress on an 

inclined plane at a point [2, 3]. Figure 2 shows the forces on a tetrahedron with three faces 

oriented in the coordinate planes and with an infinitesimal plane oriented in an arbitrary 



 

 

direction. The integral form of the tetrahedron's equilibrium under forces is as follows: 

 d d = 0
S V

V   S T F ,  (14) 

here, T is the stress on the surface of tetrahedron. 

Since the volume of the tetrahedron is infinitesimal, the stresses on each of the 

tetrahedron is regarded as constants. The equilibrium of the tetrahedron under forces is 

rewritten as: 

 1 1 2 2 3 3n S S S S V        T T T T F ,  (15) 

where, Tn, and △S are the stress on the inclined plane and the area of the inclined plane, 

T1, T2 and T3 are the stresses on the three planes oriented in the coordinate planes, 

respectively, △S1, △S2 and △S3 are the area of three planes oriented in the coordinate 

planes, respectively. Neglecting the body force in the tetrahedron, the stress on an inclined 

plane is obtained by the equilibrium of forces acting on the tetrahedron and is written as: 

  T n ,  (16) 

with n the unit vector of outer normal of an inclined plane. 

 



 

 

Figure 2. Equilibrium of forces on tetrahedron 

 

As the shape of material elements is not constrained in defining the momentum 

conservation of material components, the equation for determining the stress on an inclined 

plane is the momentum conservation equation of material elements. The calculation of the 

stress on an inclined plane is equivalent to denying the necessity of body force in Cauchy’s 

equation of motion and deeming no waves in elastic media. The purpose of this study is to 

propose a new motion description of continuum to solve these paradoxes. In classical 

mechanics, a rigid body is defined as a system of mass points subject to the holonomic 

constraints [18]. The introduction of the theorem of moment of momentum illustrates that 

continuum mechanics regards the material elements forming a continuum as rigid bodies 

that do not undergo rotation from a dynamic perspective. This conflicts with the fact that 

the displacement and velocity fields can be curl fields, because the antisymmetric part of 

the displacement gradient and velocity gradient is considered to be the rotation of the 

material element. The study believes that continuum mechanics should regard the material 

elements as deformable bodies that only undergoes centroid translation under external 

forces. This means that the displacement of a material element should be regarded as the 

displacement of the centroid of the element or the average of displacement of the element. 

The rotation of displacement field indicates that there is a difference in the vertical direction 

of the motion of material elements. 

3. Differential description of Newton's second law of motion 

When the momentum conservation of a discrete body is described in classical 

mechanics, the resultant force acting on the discrete body is given by the vector sum. Figure 



 

 

3 shows a force system on a block, which is composed of two forces operating vertically 

on the ends of the block in the x direction. The momentum conservation of the block is 

expressed by the sum of vectors as: 

 1 2 m T T a ,  (17) 

here, T1 and T2 are the external force acting on both ends of the block, m is the mass of 

block and a is the average acceleration of the block. Given that the block is a rigid body, 

the internal force acting on its transversal section along the x direction should rise linearly 

as illustrated in Figure 1b. The motion of the block under an external force can be described 

with the motion of any free body included within the block. 

 

Figure 3. Force analysis of a block. (a) Forces on the block, (b) internal force on the 

transversal section of the block along the x direction 

 

Assuming that there is a free body with the length △x located at x0 as illustrated in 

Figure 3, The momentum conservation of the free body can be expressed by the sum of 



 

 

vectors as: 

 1 2 x
x m

L L

 
 

T T
a ,  (18) 

here, L is the length of block. The momentum conservation of a free body can be expressed 

in differential form when its volume approaches toward zero. The momentum conservation 

of a free body with infinitesimal volume can be expressed in differential form directly using 

vector operation as: 

 ˆ  Tx a ,  (19) 

where, T is the force on the surface of free body along the x direction, x̂  is the unit vector 

of x coordinate and ρ is the density of block. Equation (19) shows that the motion direction 

should be known beforehand when the momentum conservation of a free body with 

infinitesimal volume is given in differential form by directly taking the divergence for the 

internal force field. This is not feasible in continuum mechanics. In order to express the 

conservation of momentum of a free body with infinitesimal volume in differential form, 

a new operation must be introduced. This issue is addressed in an attempt by Cauchy's 

equation of motion. Unfortunately, the way that the divergence of second-order tensors is 

currently calculated is wrong., the section gives the correct expression of divergence of 

second-order tensor based on the assumption of continuum motion. The correctness of the 

new expression of divergence of second-order tensor will be verified in the next section 

through tensor analysis. 

For the forced block in Figure 3, the momentum conservation of a free body with 

infinitesimal volume in the block can be written in differential form as: 

 S    a ,  (20) 

here, ρ is the density of block, σS is a second-order symmetric tensor whose components 



 

 

are expressed with matrix at the Cartesian coordinate system (x, y, z) as: 
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with T the value of normal force on the transversal section of the block along x direction. 

Since the motion of a block is independent of the selection of coordinates, the momentum 

conservation of a free body described with Equation (20) should not change with 

coordinate selection. At the Cartesian coordinate system (x', y', z'), the components of σS 

are expressed with matrix as: 
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,  (22) 

with θ the rotation angle of the coordinate system (x', y', z') relative to the coordinate system 

(x, y, z). Given that Equation (20) describes motion irrespective of coordinate choice, the 

following equation should be true: 

   S Str     ,  (23) 

here, tr(σS) is the trace of σS, which is the first invariant of σS. Equation (23) distinguishes 

between the divergence of a second order symmetric tensor and the divergence of a second 

order symmetric tensor in continuum mechanics. It is obvious that a vector would be 

expanded to a second-order tensor once it is realized that pressure is sometimes considered 

as a spherical tensor and other times as a scalar. 

When the forces illustrated in Figure 3 act on a block, the internal force field in the 

block is a curl free field because the circulation of surface force acting on any free body 

inside the block is zero. Figure 4 illustrates a force system on a block, which consists of 



 

 

two forces acting tangentially on the ends of the block in the x direction. In contrast to the 

external forces acting on the block as illustrated in Figure 3, the circulation of surface force 

acting on the block is non-zero. Assuming that the block is deformable and the acceleration 

of any free body inside the block is along the direction of resultant force, the conservation 

of momentum of a free body with infinitesimal volume in the block can be expressed in 

differential form as: 

  : A    a ,  (24) 

here, ε is Levi Civita symbol and σA is a second-order asymmetric tensor whose 

components can be described by a matrix at the cartesian coordinate system (x, y, z) and at 

the Cartesian coordinate system (x', y', z') respectively as: 

 

0 0

0 0 0

0 0 0

A
ij

T



 
 
 
  

,  (25) 

and 
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.  (26) 

It is easy to prove that : A   is a vector independent of the coordinate selection. 

Assuming that the motion of material elements forming a continuum is the 

superposition of two motions specified above, the conservation of momentum for a 

continuum should be expressed in differential form as follows: 

     :S Atr     = a .  (27) 

Comparing the conservation of momentum described by Equation (27) with the wave 

equation in the theory of elasticity and the Navier-Stokes equation in the theory of fluid 



 

 

dynamics, in which the momentum conservation of elastomers and fluids are described 

with displacement and velocity, it is seen that they are the same in form [2, 14]. 

 

Figure 4. Force analysis of a block. (a) Forces on the block, (b) motion of the block under 

external force 

4. Relationship between the properties of a vector field and its gradient 

Assuming that A represents an arbitrary vector field, two vectors infinitesimally close 

in distance satisfy the following connection under linear expansion: 

        A R R A R R A ,  (28) 

where, R is the radius vector and δR is the increment of radius vector. Separating the 

gradient of A into three tensors: a spherical tensor α, a deviatoric tensor αʹ and a rotation 

tensor χ, they can be expressed with the gradient of A as: 

  
1

6
tr   A A I ,  (29) 



 

 

  
1

2
     A A  ,  (30) 

  
1

2
   A A ,  (31) 

where, I represents second order unit tensor, A▽ represents the transposition of ▽A. When 

vector field A represents displacement field in the theory of elasticity, the spherical tensor 

α, deviatoric tensor αʹ and rotation tensor χ correspondingly describe the volume expansion, 

shear deformation and rigid body rotation of material element. 

With Equations (29) to (31), the divergence and curl of A can be expressed as: 

    tr tr     A     ,  (32) 

  : :     A       .  (33) 

Equations (32) and (33) shows that the divergence and curl of a vector field are included 

in spherical tensor and rotation tensor, respectively. When the gradient of A is a symmetric 

tensor, the vector field A is a curl free field, and when the gradient of A is an asymmetric 

tensor, the vector field A is a curl field. By taking the divergence of a gradient, the Laplace 

operator is obtained. The Laplacian of a vector field is another vector field and is expressed 

as: 

 2    A A A .  (34) 

Submitting Equations (22) and (33) into Equation (34), the Laplacian of the vector field A 

can be rewritten as: 

     2 :tr   A    .  (35) 

That is, the Laplacian of a vector field can be described by the spherical tensor and rotation 

tensor of its gradient. 



 

 

In continuum mechanics, the Laplacian of displacement is obtained by directly taking 

the divergence of strain (rate) tensor, a second-order symmetric tensor [14, 15]. By taking 

the divergence of symmetric and antisymmetric parts of the gradient of A, the following 

formulas can be obtained: 

    21 1

2 2
              A A A A  ,  (36) 

  21 1

2 2
         A A A .  (37) 

Equations (36) and (37) both contain curl part of vector A. The result conflicts with the 

original intention of the theory of elasticity to separate the local rigid body rotation from 

deformation of elastomer through tensor decomposition. With Equation (36), the 

divergences of spherical tensor and deviatoric tensor are expressed as follows: 

      A ,  (38) 

 
1

2
       A .  (39) 

αʹ is a second order symmetric tensor, which should have been independent of the curl of 

the field A. It is obtained from Equations (37) and (39) that the typical method of 

determining the divergence of the second-order tensor is in conflict with the traditional 

notion that deformation is independent of rotation. In order to distinguish between a curl 

field and a curl free field, the gradient of a vector field should be divided into an asymmetric 

tensor obtained from the gradient of a curl field and asymmetric tensor obtained from the 

gradient of a curl free field. In this case, the Laplacian of the decomposed vector field 

equals the divergence of its gradient. 



 

 

5. Theories of elasticity and fluid dynamics from new dynamic hypothesis 

The section re-establishes the theories of elasticity and fluid dynamics from new 

dynamic hypothesis. The study believes that the general method to continuum mechanics 

is sound, but introduces a superfluous dynamic hypothesis, conservation of moment of 

momentum, and makes errors in the derivation of divergence of second order tensor. The 

section concentrates on the rectification of the constitutive relationship of elastomer and 

fluid as well as the derivation of the elastic wave equation and Navier-Stokes equation by 

substituting the displacement and velocity into new motion equation, respectively. 

5.1 New motion description 

According to the analysis of the relationship between a vector field and its gradient in 

previous section shows, the stress tensor can be expressed with a vector. Here we assume 

that the stress tensor can fully capture the stress state at a point in a continuum, and that it 

can be written as the gradient of a vector field Ʃ termed as the stress vector here: 

 =  .  (40) 

The characteristic of the stress vector Ʃ controls the circulation of the surface force acting 

on the free body within a continuum. When the stress vector Ʃ is a curl free field, the 

circulation of surface force acting on the free body is zero and the stress tensor is a 

symmetric tensor. When the stress vector Ʃ is a curl field, the circulation of surface force 

acting on the free body is non-zero and the stress tensor is an asymmetric tensor. With 

Equation (40), the divergence of stress tensor can be rewritten with Ʃ as: 

        =    .  (41) 

In accordance of Equation (35), Equation (41) can be rewritten as: 



 

 

     :Str     =    ,  (42) 

where, σS is the symmetric part of σ, and τ is the antisymmetric part of σ, which are 

respectively expressed with Ʃ as: 

  
1

2
S       ,  (43) 

  
1

2
      .  (44) 

According to the properties of the displacement field when transverse waves 

propagate in elastomer and the properties of the velocity field when viscous fluid flows, 

the study believes that the momentum conservation described with Equation (27) can fully 

describe the momentum conservation of classical continuum: 

 2D
0

Dt
  

v
f = ,  (45) 

here, D/Dt is the material derivative, v is the velocity of material element translation, f is 

the body force which is a curl free field. Replacing the stress vector Ʃ with stress tensor, 

the conservation of momentum of classical continuum is rewritten as: 

     
D

:
D

Str
t

    
v

f = .  (46) 

It is clear from the new motion description of the material element that the stress tensor 

does not need to be symmetric in classical continuum mechanics. The stress tensor is 

asymmetric when the circulation of stress field is not zero. 

Due to the introduction of unsuitable dynamic hypothesis in continuum mechanics, 

the analysis of the properties of stress field is impossible. Until now, the characteristics of 

the stress field have not yet been fully analyzed. The investigation of stress field properties 



 

 

is made possible by the introduce of the stress vector Ʃ. With Equation (40), the stress on 

an inclined plane symbolled with T can be expressed as: 

 
   



 
  

R R R
T n

R

 
 .  (47) 

Equation (47) shows that the stress on an inclined plane is the directional derivative of 

stress vector Ʃ. The stress tensor is an introduced mathematical concept to conveniently 

describe the stress on a surface at a point and establishes the relationship between stress 

and deformation of continua. 

5.2 Derivation of elastic wave equation from new theory of elasticity 

For an elastomer with small deformation, the convective acceleration is zero, and the 

conservation of momentum can be simplified as: 

     
2

2
:S Atr

t



    


u
f =   ,  (48) 

here, t   is the time derivative and ρ is a constant. Under the new motion description, the 

study believes that the constitutive relation and strain-displacement relationship of 

isotropic elastomer should be expressed as follows: 

 := C e ,  (49) 

 e = u ,  (50) 

here, C is the fourth-order elastic tensor and e is the strain tensor including the traditionally 

defined one and the rotation tensor. The elastic tensor in component form should be 

expressed as: 

 
ijkl ij kl ik jlC      .  (51) 

It is seen from Equations (49) to (51) that the stress tensor is asymmetric when 



 

 

displacement field is rotational and is symmetric when displacement field is curl free. In 

fact, that no stress produced by local rigid body rotation makes the traditional 

representation of the elastic tensor superfluous. Though the traditional elastic tensor is 

replaced with Equation (51), the stress tensor is symmetric only if strain tensor is 

symmetric. 

By submitting Equation (49) into Equation (48), the momentum conservation of an 

elastomer is expressed with strain tensor as: 

       
2

2
:Str

t
   


     



u
e f =  ,  (52) 

with 

  
1

2
S   e = u u ,  (53) 

  
1

2
  = u u ,  (54) 

where, eS and Ω are the strain tensor and rotation tensor. Via the relationship between vector 

field and its gradient (Equations (32) and (33)), Equation (52) can be rewritten with 

displacement as: 

  
2

2t
   


        



u
u u f = .  (55) 

It is seen from Equation (55) that the wave equation derived from new conservation of 

momentum can predict both the existence of longitudinal wave and transverse wave in 

elastomer, while the velocity of longitudinal wave is lower than that of traditional one. 

5.3 Derivation of Navier-Stokes equation from new theory of fluid dynamics 

For viscous fluids, the stress is related to the volume deformation and shear motion. 



 

 

When the shear motion occurs in a viscous fluid, the velocity field is a curl field. In this 

case, the internal force field in the viscous fluid is a curl field, and the stress tensor is an 

asymmetric tensor. When the stress brought on by shear motion is distinguished from the 

stress brought on by volume deformation, the momentum conservation of fluid is expressed 

as follows: 

     
D

:
D

tr
t

    
v

d f = ,  (56) 

with 

  
1

3
trd = I  ,  (57) 

here, d is deviatoric stress tensor which is an asymmetric tensor. For a Newtonian fluid, the 

relation between deviatoric stress tensor and deviatoric strain rate tensor ξ in component 

form is expressed as: 

 
ij ik jl kld    ,  (58) 

where, η is the viscosity of fluid. The deviatoric strain rate tensor ξ and the velocity v have 

the following relationship: 

  
1

3
tr   v v I .  (59) 

Submitting Equation (59) into Equation (58) and consequently submitting the relation 

between deviatoric stress and deviatoric strain rate expressed with velocity into Equation 

(56), the momentum conservation of a fluid can be expressed with velocity as:  

     
D

:
D

tr
t

       
v

v f = .  (60) 

Since the following relations hold: 

   2:          v = v = v v ,  (61) 



 

 

Equation (60) can be rewritten as: 

     2 D

D
tr

t
      

v
v v f = .  (62) 

In accordance with the definition of pressure, the following equation holds: 

  
1

3
p tr   ,  (63) 

with p defined pressure. Equation (62) is rewritten as: 

  2 D
3

D
p

t
       

v
v v f = .  (64) 

Equation (64), while different, has the same in form as the Navier-Stokes equation for 

Newtonian fluid. The difference between Equation (64) and Navier-Stokes equation 

indicates that there is a difference between thinking about pressure as a scalar and a 

spherical tensor. When pressure is regarded as a scalar symbolled P, the relationship 

between fluid volume deformation and pressure is expressed as: 

 P K    u ,  (65) 

With K the bulk modulus of fluid. When pressure is regarded as a spherical tensor, the 

relationship between fluid volume deformation and pressure is expressed as: 

  
3

K
p    I u I .  (66) 

It is seen from Equations (65) and (66) that P=3p. The pressure in Navier-Stokes equation 

is the pressure in scalar form P. Submitting Equation (66) into Equation (64) and replacing 

velocity with displacement, Equation (64) is rewritten as follows:  

  2 D

D
K

t
       


 

u
u u u f = .  (67) 

with = t u u . For further special case of incompressible fluid, the mass conservation 



 

 

reduces to 0  v , which means that the density of fluid does not change with pressure, 

Equation (64) reduces to: 

 2 D

D
P

t
    

v
v f = .  (68) 

Equation (65) is the equation of motion for incompressible Newtonian fluid, which is the 

same with Navier-Stokes equation. 

From Equation (60), it is seen that the viscous force is generated only by the shear 

motion of fluid (or relative slide of fluid elements) rather than traditional defined shear 

deformation of fluid. As a result, Newton's definition of the viscous force differs 

significantly from the one derived from that based on traditional deformation theory. There 

are two key distinctions between the viscous forces as defined by Newton and the viscous 

forces as defined by traditional deformation theory. One is that the former demonstrates 

that a scalar potential cannot adequately represent the fluid flow's velocity field, whereas 

the latter demonstrates that a scalar potential may adequately characterize the flow's 

potential to produce viscous force. Another difference is that the former believes that 

viscous force is related to local rigid body rotation, while the latter believes that viscous 

force is independent of local rigid body rotation. Batchelor appears to have discovered the 

distinction. He pointed out that there is a paradox in the description of viscous force with 

deformation theory that viscous force should be independent of the local vorticity [2]. In 

the Navier-Stokes equation of motion, the viscous force is only related to the curl velocity 

field. This illustrates that the viscous force defined by Newton is appropriate rather than 

that defined by deformation theory. 

When the fluid flow is described with the theory of fluid dynamics based on traditional 

deformation theory, the bulk viscosity is added in the viscous coefficient tensor, which 



 

 

indicates that the viscous force can be caused by bulk deformation of fluid [2, 16]. In order 

to make the thermodynamic pressure equal to the mechanical pressure in fluid, the Stokes 

hypothesis is introduced. In fact, during the formulation of Navier-Stokes equation of 

motion, the stress caused by volume deformation (or pressure) has been distinguished from 

stress tensor. The term describing viscous force in the Navier-Stokes equation of motion 

should, therefore, not include viscous force related to volume deformation. This again 

demonstrates that the theory of traditional fluid dynamics has problems in explaining the 

fluid dynamics. 

6. Application of new theory of elasticity 

We take the problem of a wedge subjected to dead-weight and liquid pressure as an 

example to verify the validity of the new theory of elasticity. As shown in Figure 5, the 

height of the wedge is L, the top angle of the wedge is α and the unit volume weight of the 

wedge is ρg (ρ is the density of wedge). the liquid pressure on the wedge at depth y is equal 

to γgy (γ is the density of the liquid, g is the gravitational acceleration). In traditional theory 

of elasticity, the analytical expression of assumed stress function is often obtained by 

introducing boundary conditions of the edges of o-a and o-b [19]. The boundary condition 

of the edge of a-b is often not considered. If the problem is regarded as the problem of a 

variable cross-section beam under distributed load, it can be found that the solution does 

not consider the influence of reaction force on the stress distribution in the beam. The same 

problem also occurs in solving cantilever beam problems. Here We solve the stress 

distribution of the wedge by adding constraints on the edge of a-b. To obtain an analytical 

solution to the problem, the additional boundary conditions that the vertical displacement 

at point a and the horizontal displacement at point b are zero are added. 



 

 

 

Figure 5. diagram of a wedge subjected to dead-weight and liquid pressure. 

 

Assuming that the stress potential in the plane (xoy) can be assumed as follows: 

 x
x y

  
 
 

 ,  (69) 

 y
y x

  
 
 

 ,  (70) 

here ϕ and φ are the scalar potential and vector potential, the two potentials can be 

expressed as follows, respectively: 

 3 2 2 3Ax Bx y Cxy Dy     ,  (71) 

 3 2 2 3Px Qx y Mxy Ny     .  (72) 

here, A, B, C, D P, Q, M, N are the coefficient determined by boundary conditions. 

Assuming that the thickness of the wedge is very large, the problem can be regarded as a 

plane strain problem. With Equations (49) and (50), the displacement in the plane (xoy) can 

be expressed as: 
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,  (73) 

 
1

yu
y x

 



 
 
 

,  (74) 

with χ a scalar potential, which can be assumed as: 

  3 2 2 31
Ex Bx y Cxy Fy


    ,  (75) 

here, E and F are the coefficient determined by the constitutive relation of an elastomer. 

According to Equations (40) (49) and (50), the following equations are obtained: 

 
1

3
F D B


   ,  (76) 

 
1 1

3
E A C

 
    .  (77) 

Replacing D and A in Equations (71) and (72) with B and C, the components of stress 

tensor are expressed as: 
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Replacing E and F in Equation (75) with B and C, the components of displacement are 

expressed as: 
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Submitting the boundary conditions of the wedge, the coefficient are obtained. 

According to the boundary conditions of the edge of o-b (σxx=-γgy, σxy=0 when x=0), the 

following equations are obtained: 

 
2

g
B M


   ,  (80) 

 0C Q  .  (81) 

According to the boundary conditions of the edge of o-a (n·σ=0 when x=ytanα), the 

following equations are obtained: 
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According to the boundary conditions at the point b (ux=0), the following equation is 

obtained: 

 3 0C N  .  (84) 

According to the boundary conditions at the point a (uy=0), the following equation is 

obtained: 

  2 2tan 1 2 tan 3 tan 2 tan 0B C P Q M         ,  (85) 

Rewriting Equations (80)-(85) in matrix form, the linear equation system composed of 

undetermined coefficients is expressed as follows: 
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. (86) 

The undetermined coefficients are obtained by multiplying both sides of Equation (85) by 

the inverse of the coefficient matrix. 

7. Conclusions 

The study has proven that the theorem of moment of momentum is not necessary in 

continuum mechanics via the derivation of conservation of moment of momentum with the 

stress expanded at different points and that the deformation coordination equation cannot 

accurately reflect the properties of the displacement field by examining the equilibrium 

equation expressed in terms of displacement. The theories of elasticity and fluid dynamics 

are re-established on the basis of new dynamic hypotheses. In the new theories, the theorem 

of momentum is the only dynamic law that a continuum obeys. The second law of Newton, 

which explains the dynamic behavior of discrete particles, is extend to differential form. 

by examining the connection between of a vector’s characteristics and its gradient, the 

validity of the new differential form of Newton's second law is demonstrated. The result 

shows that the stress tensor can be written as an asymmetric tensor and with a gradient of 

a vector. the new theories of elasticity and fluid dynamics are established by correctly 

altering the constitutive relationship of elastomer and fluid, respectively. The compatibility 

conditions and Stokes hypothesis no longer required in the new theories of elasticity and 



 

 

fluid dynamics, respectively. It is shown that traditional deformation theory is not 

appropriate for the describing viscous force and that Newton’s definition of viscous force 

differs significantly from that based on classic deformation theory. A curl force field, like 

viscous force, can balance a curl free force field, like pressure, in a continuum according 

the Navier-Stokes equation. The problem of a wedge subjected to dead-weight and liquid 

pressure is also solved with the new theory of elasticity to verify the validity of the new 

theory of elasticity. 
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