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Preface

These notes are prepared for a class on an Introduction to Mathematical Modeling, de-
signed to introduce CAM students to Area C of the CAM-CES Program. I view nonlinear
continuum mechanics as a vital tool for mathematical modeling of many physical events -
particularly for developing phenomenological models of thermomechanical behavior of solids
and fluids. I attempt here to present an accelerated course on continuum mechanics acces-
sible to students equipped with some knowledge of linear algebra, matrix theory, and vector
calculus. I supply notes and exercises on these subjects as background material.

J. Tinsley Oden
September 2008
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Chapter 1

Kinematics of Deformable Bodies

Continuum mechanics models the physical universe as a collection of “deformable bodies,” a
concept that is easily accepted from our everyday experiences with observable phenomena.
Deformable bodies occupy regions in three-dimensional Euclidean space E , and a given
body will occupy different regions at different times. The subsets of E occupied by a body
B are called its configurations. It is always convenient to identify one configuration in which
the geometry and physical state of the body are known and to use that as the reference
configuration; then other configurations of the body can be characterized by comparing
them with the reference configuration (in ways we will make precise later).

For a given body, we will assume that the reference configuration is an open, bounded,
connected subset Ω0 of R

3 with a smooth boundary ∂Ω0. The body is made up of physical
points called material points. To identify these points, we assign each a vector X and
we identify the components of X as the coordinates of the place occupied by the material
point when the body is in its reference configuration relative to a fixed Cartesian coordinate
system.

It is thus important to understand that the body B is a non-denumerable set of material
points X. This is the fundamental hypothesis of continuum mechanics: matter is not
discrete, it is continuously distributed in one-to-one correspondence with points in some
subset of R

3. Bodies are thus “continuous media” – the components of X with respect to
some basis are real numbers. Symbolically, we could write

B = {X} ∼ {X = Xiei ∈ Ω̄0}

for some orthonormal basis {e1, e2, e3} and origin 0 chosen in three-dimensional Euclidean
space and, thus, identified with R

3. Hereafter, repeated indices are summed throughout
their ranges: the “summation convention”.

Kinematics is the study of the motion of bodies, without regard to the causes of the
motion. It is purely a study of geometry and is an exact science within the hypothesis of a
continuum (a continuous media).

1.1 Motion

We pick a point 0 in R
3 as the origin of a fixed coordinate system (x1, x2, x3) = x defined by

orthonormal vectors ei, i = 1, 2, 3. The system (x1, x2, x3) is called the spatial coordinate
system. When the physical body B occupies its reference configuration Ω0 at, say, time t = 0,
the material point X occupies a position (place) corresponding to the vector X = Xiei.
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CHAPTER 1. KINEMATICS OF DEFORMABLE BODIES
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Figure 1.1: Motion from the reference configuration Ω0 to the current configuration Ωt.

The spatial coordinates (X1,X2,X3) of X are labels that identify the material point. The
coordinate labels Xi are sometimes called material coordinates (see Fig. 1.1).

Remark: Notice that if there were a countable set of discrete material points, such as
one might use in models of molecular or atomistic dynamics, the particles (discrete masses)
could be labeled using natural numbers n ∈ N, as indicated in Figure 1.2. But the
particles (material points) in a continuum are not countable, so the use of a label of three
real numbers for each particle corresponding to the coordinates of their position (at t = 0)
in the reference configuration, seems to be a very natural way to identify such particles.

The body moves through E over a period of time and occupies a configuration Ωt ⊂ R
3 at

time t. Thus, material points X in Ω̄0 (the closure of Ω0) are mapped into positions x in
Ω̄t by a smooth vector-valued mapping (see Fig. 1.1)

x = ϕ(X, t)

Thus, ϕ(X, t) is the spatial position of the material point X at time t. The one-parameter
family {ϕ(X, t)} of positions is called the trajectory of X. We demand that ϕ be differen-
tiable, injective, and orientation preserving. Then ϕ is called the motion of the body:

1. Ωt is called the current configuration of the body.

2. ϕ is injective (except possibly at the boundary ∂Ω0 of Ω0).

3. ϕ is orientation preserving (which means that the physical material cannot pene-
trate itself or reverse the orientation of material coordinates – which means that
det∇ϕ(X, t) > 0).
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1.1. MOTION
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Figure 1.2: A discrete set of material particles

Hereafter we will not explicitly show the dependence of ϕ and other quantities on time t
unless needed; this time dependency is taken up later.

The vector field

u = ϕ(X) − X

is the displacement of point X. Note that

dx = ∇ϕ(X)dX

(
i.e. dxi =

∂ϕi
∂Xj

dXj

)
.

The tensor

F(X) = ∇ϕ(X)

is called the deformation gradient. Clearly,

F(X) = I + ∇u(X)

where I is the identity tensor and ∇u is the displacement gradient.

Some Definitions:

• A deformation is homogeneous if F = C = constant

3



CHAPTER 1. KINEMATICS OF DEFORMABLE BODIES

• A motion is rigid if it is the sum of a translation a and a rotation Q:

ϕ(X) = a + QX,

where a ∈ R
3, Q ∈ O

3
+, with O

3
+ the set of orthogonal matrices of order 3 with

determinant equal to +1.

• As noted earlier, the fact that the motion is orientation preserving means that

det∇ϕ(X) > 0 ∀ X ∈ Ω̄o

• Recall that

Cof F = cofactor matrix (tensor) of F = detF F−T

For any matrix A = [Aij ] of order n, and for each row i and column j, let A′
ij be

the matrix of order n− 1 obtained by deleting the ith row and jth column of A. Let
dij = (−1)i+j detA′

ij. Then the matrix

CofA = [dij ]

is the cofactor matrix of A and dij is the (i, j)–cofactor of A.

A(Cof A)T = (Cof A)TA = (detA)I

1.2 Strain and Deformation Tensors

A differential material line segment in the reference configuration is

dS2
0 = dXTdX = dX2

1 + dX2
2 + dX2

3

while the same material line in the current configuration is

dS2 = dxTdx = dXTFTFdX

The tensor

C = FTF = the right Cauchy-Green deformation tensor

is thus a measure of the change in dS2
0 due to (gradients of) the motion

dS2 − dS2
0 = dXTCdX − dXTdX.

C is symmetric, positive definite. Another deformation measure is simply

dS2 − dS2
0 = dXT (2E)dX

4



1.2. STRAIN AND DEFORMATION TENSORS

where

E =
1

2
(C − I) = the Green strain tensor

Since F = I + ∇u and C = FTF,

E =
1

2
(∇u + ∇uT + ∇uT∇u)

The tensor

B = FFT = the left Cauchy-Green deformation tensor

is also symmetric and positive definite.

1.2.1 Interpretation of E

Take dS0 = dX1 (i.e. dX = (dX1, 0, 0)
T ). Then

dS2 − dS2
0 = dS2 − dX2

1 = 2E11dX
2
1 ,

so

E11 =
1

2

((
ds

dX1

)2

− 1

)
=






a measure of the stretch of a
material line originally oriented
in the X1–direction in Ω0

We call e1 the extension in the X1–direction at X (which is a dimensionless measure of
change-in-length-per-unit length)

e1
def
=
dS − dX1

dX1
=
√

1 + 2E11 − 1

or

2E11 = (1 + e1)
2 − 1

Similar definitions apply to E22 and E33.

Now take dX = (dX1, dX2, 0)
T and

cos θ =
dx1 · dx2

‖dx1‖ ‖dx2‖
=

C12√
1 + 2E11

√
1 + 2E22

(Exercise)

The shear (or shear strain) in the X1–X2 plane is defined by the angle change (see Fig-
ure 1.3),

γ12
def
=
π

2
− θ
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Figure 1.3: Change of angle through the motion ϕ.

Therefore

sin γ12 =
2E12√

1 + 2E11

√
1 + 2E22

Thus, E12 (and, analogously, E13 and E23) is a measure of the shear in the X1–X2 (or
X1–X3 and X2–X3) plane.

1.2.2 Small Strains

The tensor

e =
1

2
(∇u + ∇uT )

is called the infinitesimal or small or engineering strain tensor. Clearly

E = e +
1

2
∇uT∇u

Note that if E is “small” (i.e. |Eij | ≪ 1).

e1 = (1 + 2E11)
1/2 − 1

= 1 + E11 − 1 + 0(E2
11)

≈ E11 = e11

that is

e11 = e1 =
dS − dX1

dX1
, etc.

and

2e12 = sin γ12 ≈ γ12, etc.

Thus, small strains can be given the classical textbook interpretation: en is the change
in length per unit length and e12 is the change in the right angle between material lines in
the X1– and X2–directions.

6



1.3. RATES OF MOTION AND DEFORMATION

1.3 Rates of Motion and Deformation

If ϕ(X, t) is the motion (of X at time t), i.e.

x = ϕ(X, t)

then

ẋ
def
=
∂ϕ(X, t)

∂t

is the velocity and

ẍ
def
=
∂2ϕ(X, t)

∂t2

is the acceleration.
Since ϕ is (in general) bijective, we can also describe the velocity as a function of the

place x in R
3 and time t:

v = v(x, t) = ẋ(ϕ−1(x, t), t)

This is called the spatial description of the velocity.
This leads to two different ways to interpret the rates-of-motion of continua:

1. The Material Description (functions are defined on material points X in R
3).

2. The Spatial Description (functions are defined on (spatial) places x in R
3).

When the equations of continuum mechanics are written in terms of the material descrip-
tion, the collective equations are commonly referred to as the Lagrangian form (formulation)
of the equations (see Fig. 1.4). When the spatial description is used, the term Eulerian form
(formulation) is used (see Fig. 1.5).

There are differences in the way rates of change appear in the Lagrangian and Eulerian
formulations.

In the Lagrangian case:

dϕ(X, t)

dt
=
∂ϕ(X, t)

∂t
+
∂ϕ(X, t)

∂X
· ∂X
∂t

,

but
∂X

∂t
= 0 because X is simply a label of a material point. Thus,

dϕ(X, t)

dt
=
∂ϕ(X, t)

∂t

In the Eulerian case: Given a field ψ = ψ(x , t),

dψ(x, t)

dt
=
∂ψ(x , t)

∂t

∣∣∣∣
x fixed

+
∂ψ(x , t)

∂x
· ∂x
∂t
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Figure 1.4: Lagrangian (material) description of velocity: The velocity of a material
point is the time rate of change of the position of the point as it moves along its path (its
trajectory) in R

3.

but
∂x

∂t
= v(x , t) is the velocity at position x and time t. Thus,

dψ(x , t)

dt
=
∂ψ(x , t)

∂t
+ v(x , t) · ∂ψ(x , t)

∂x

Lagrangian (notation)

“∂ ”

∂X
= ∇ = Grad,

∂

∂X
· ϕ = ∇ ·ϕ = Div ϕ

Eulerian (notation)

“∂ ”

∂x
= grad,

∂

∂x
· v = div v

In classical literature, some authors write

Dψ

Dt
=
∂ψ

∂t
+ v · grad ψ

as the “material time derivative” of a scalar field ψ, giving the rate of change of ψ at a fixed
place x at time t. Thus, in the Eulerian formulation, the acceleration is

a =
Dv

Dt
=
∂v

∂t
+ v · grad v

v being the velocity.
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1.4. RATES OF DEFORMATION
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Figure 1.5: Eulerian (spatial) description of velocity: The velocity at a fixed place
x in R

3 is the speed and direction (at time t) of particles flowing through the place x

1.4 Rates of Deformation

The spatial (Eulerian) field

L = L(x , t)
def
=

∂

∂x
· v(x , t) = grad v(x , t)

is the velocity gradient. The time rate of change of the deformation gradient F is

Ḟ ≡ ∂

∂t
∇ϕ(X, t) = ∇∂ϕ

∂t
(X, t)

=
∂

∂X
v(x , t) =

∂v

∂x

∂x

∂X
= grad v F

or,

Ḟ = grad v F = LmF

where Lm = L is written in material coordinates, so

Lm = ḞF−1

It is standard practice to write L in terms of its symmetric and skew-symmetric parts:

L = D + W

Here

D =
1

2
(L + LT ) = the deformation rate tensor

W =
1

2
(L − LT ) = the spin tensor

9



CHAPTER 1. KINEMATICS OF DEFORMABLE BODIES

We can easily show that if v is the velocity field,

W v =
1

2
ω × v

where ω is the vorticity

ω = curl v

Recall (Cf. Exercise 2.6) that

D(detA) : V = (detA)VT : A−1

for any invertible tensor A and arbitrary V ⊂ L(V, V ). Also, if f(g(t)) = f ◦ g(t) denotes
the composition of functions f and g, the chain rule of differentiation leads to

df(g(t))

dt
= df(g(t)) · dg(t)

dt
= Df(g(t)) : ġ(t)

Combining these expressions, we have

˙detF =
∂ detF

∂t
= D(detF) : Ḟ = detF Ḟ

T
: F−1 = detF tr L = detF div v

(Since Ḟ
T

: F−1 = tr ḞF−1 = tr Lm, where Lm is L written as a function of the material
coordinates, and tr L = tr grad v = div v). Summing up:

˙detF = detF div v

1.5 The Piola Transformation

The situation is this: a subdomain G0 ⊂ Ω0 of the reference configuration of a body,
with boundary ∂G0 and unit exterior vector n0 normal to the surface-area element dA0, is
mapped by the motion ϕ into a subdomain G = ϕ(G0) ⊂ Ωt of the current configuration
with boundary ∂G with unit exterior vector n normal to the “deformed” surface area dA
(see Fig. 1.6).

Moreover, there is a tensor field T0 = T0(X) defined on G0 that associates with n0

the vector T0(X)n0(X) at a point X on ∂G0, the vector T0n0 being the flux of T0 across
or through ∂G0 at X with respect to T0. There is a corresponding tensor field T(x ) =
T(ϕ(X)) defined on G that associates with n the vector T(x )n(x ) at a point x = ϕ(X)
on ∂G. We seek a relationship between T0(X) and T(x ) that will result in the same total
flux through the surfaces ∂G0 and ∂G, so that

∫

∂G0

T0(X)n0(X) dA0 =

∫

∂G
T(x )n(x ) dA

with x = ϕ(X). This relationship between T0 and T is called the Piola transformation.

10



1.5. THE PIOLA TRANSFORMATION
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Figure 1.6: Mapping from reference configuration into current configuration.

Proposition: The above correspondence holds if

T0(X) = detF(X) T(x ) F(X)−T = T(x ) Cof F(X)

Proof: (This development follows that of Ciarlet). We will use the Green’s formulas
(divergence theorems)

∫

G0

Div T0 dX =

∫

∂G0

T0n0 dA0

and
∫

G
div T dx =

∫

∂G
Tn dA

where

Div T0 = ∇ · T0 =
∂(T0)ij
∂Xj

ei

div T =
∂

∂xj
Tijei

dx = dx1dx2dx3 = detF dX = detF dX1dX2dX3

We will also need to use the fact that

∂

∂Xj
(Cof ∇ϕ)ij = 0

To show this, we first verify by direct calculation that

(Cof F)ij = (Cof ∇ϕ)ij =

(
∂

∂Xj+i
ϕi+1

)(
∂

∂Xj+2
ϕi+2

)
−
(

∂

∂Xj+2
ϕi+1

)(
∂

∂Xj+1
ϕi+2

)

11



CHAPTER 1. KINEMATICS OF DEFORMABLE BODIES

where no summation is used. Then a direct computation shows that

∂

∂Xj
(Cof F)ij = 0.

Next, set

T0(X) = T(x )Cof F(X)

Noting that

1

detF
(Cof F)T = F−1

and

∂xi
∂Xm

· ∂Xm

∂xj
=
∂xi
∂xj

= δij

we see that

(Cof F)ij = detF (F−1)ji = detF
∂Xj

∂xi

Thus,

Div T0(X) = ek
∂

∂Xk
(T0)ijei ⊗ ej =

∂(T0)ij
∂Xj

ei

=
∂

∂Xj
((T(x ) Cof F(X))ijei

=
∂Tim(x )

∂xr
· ∂xr
∂Xj

· Cof F(X)mjei + Tim
∂

∂Xj
�

�
�

�
�

��:
0

Cof F(X)mj ei

=
∂Tim
∂xr

· ∂xr
∂Xj

detF
∂Xj

∂xm
ei

=
∂Tir
∂xr

ei detF

= div T detF

that is

Div T0 = detF div T

Thus
∫

G0

Div T0 dX =

∫

G0

detF div T dX

∫

∂G0

T0n0 dA0 =

∫

G0

div T detF dX =

∫

G
div T dx =

∫

∂G
Tn dA

as asserted. �
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1.6. COROLLARIES AND OBSERVATIONS

1.6 Corollaries and Observations

• Since G0 is arbitrary (symbolically)

T0n0 dA0 = Tn dA

• Set T = I = identity. Then

detF F−Tn0 dA0 = n dA

• Since n =
dA0

dA
· (detF)F−Tn0 and ‖n‖ = 1,

dA = detF ‖F−Tn0‖dA0 (Nanson’s Formula)

where ‖ · ‖ denotes the Eulerian norm. Thus

n =
Cof Fn0

‖Cof Fn0‖

1.7 The Polar Decomposition Theorem

A real invertible matrix F can be factored in a unique way as

F = RU = VR

where R is an orthogonal matrix and U and V are symmetric positive definite matrices.

Proof: (We will use as a fact the following lemma: for every symmetric positive definite
matrix A, there exists a unique symmetric positive definite matrix B such that B2 = A).
Suppose F = RU where R = orthogonal, U = symmetric positive definite. Then

FTF = UTRTRU = UTU = U2

Thus U can be the unique matrix whose square is the symmetric positive definite matrix
C = FTF. Then set R = FU−1, since

RTR = U−TFTFU−1 = U−1CU−1 = U−1U−2U−1 = I

Similarly, we prove that F can be written

F = VS

13



CHAPTER 1. KINEMATICS OF DEFORMABLE BODIES

R

V

U
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Figure 1.7: The Polar Decomposition Theorem.

where V is symmetric positive definite and S is an orthogonal matrix. One can then show
that S = R. (Exercise) �

Thus, if C = FTF and B = FFT are the right and left Cauchy-Green deformation
tensors, and

F = RU ∼ RU = VR

then

C = UTRTRU = UTU = U2

B = VRRTV = VVT = V2

where U and V are the right and left stretch tensors, respectively.
Clearly, the Polar Decomposition Theorem establishes that the deformation gradient F

can be obtained (or can be viewed as the result of) a stretching followed by a rotation or
vice versa (see Fig. 1.7).

1.8 Principal Directions and Invariants of Deformation and
Strain

For a given deformation tensor field C(X) and strain field E(X) (at point X), recall that
dXTCdX = 2dXTEdX − dXTdX is the square dS2 of a material line segment in the
current configuration. Then a measure of the stretch or compression of a unit material
element originally oriented along a unit vector m is given by

∆(m) = dS2 − 1 = 2mTEm

m · m = “mTm” = 1

14



1.8. PRINCIPAL DIRECTIONS AND INVARIANTS OF DEFORMATION AND
STRAIN

One may ask: of all possible directions m at X, which choice results in the largest (or
smallest) value of ∆(m)?

This is a constrained maximization/minimization problem: find m = mmax (or mmin)
that makes ∆(m) as large (or small as possible, subject to the constraint mTm = 1. To
resolve this problem, we use the method of Lagrange multipliers. Denote by L(m,λ) =
∆(m) − λ(mTm − 1), λ being the Lagrange multiplier. The maxima (on minimize and
maximize points) of L satisfy,

∂L(m, λ)

∂m
= 0 = 4(Em − λm)

Thus, unit vectors m that maximize or minimize ∆(m) are associated with multipliers
λ and satisfy

Em = λm, mTm = 1

That is, (m, λ) are eigenvector/eigenvalue pairs of the strain tensor E, and m is normalized
so that mTm = 1 (or ‖m‖ = 1).

The following fundamental properties of the above eigenvalue problem can be listed.

1. There are three real eigenvalues and three eigenvectors of E (at X); we adopt the
ordering λ1 ≥ λ2 ≥ λ3

2. For λi 6= λj, the corresponding eigenvectors are orthogonal (for pairs (mi, λi) and
(mj, λj), mT

i mj = δij , as can be seen as follows:

mT
i (λjmj) = mT

i Cmj = mT
j Cmi = mT

j (λimi)

so

(λi − λj)m
T
i mj = 0

so

if λi 6= λj , mT
i mj = δij , 1 ≤ i, j ≤ 3

(if λi = λj , we can always construct mj so that it is orthogonal to mi)

3. Let N be the matrix with the mutually orthogonal eigenvectors as rows. Then

NTC N =




λ1 0 0
0 λ2 0
0 0 λ3



 = diag {λi, i = 1, 2, 3}

The coordinate system defined by the mutually orthogonal triad of eigenvectors define
the principal directions and values of C at X. For this choice of a basis,

E =
3∑

i=1

λimi ⊗ mi

15



CHAPTER 1. KINEMATICS OF DEFORMABLE BODIES

4. If λ1 ≥ λ2 ≥ λ3, λ1 corresponds to the maximum, λ3 to the minimum, and λ2 to a
“mini-max” principal value of E (or of ∆(n)).

5. The characteristic polynomial of E is

det(E − λI) = −λ3 + I(E)λ2 − II(E)λ+ III(E)

where I, II, III are the principal invariants of E:

I(E) = trace E ≡ tr E = Eii = E11 + E22 + E33

= λ1 + λ2 + λ3

II(E) =
1

2
(tr E)2 − 1

2
trE2

= tr Cof E

= λ1λ2 + λ2λ3 + λ1λ3

III(E) = detE

=
1

6
{(tr E)3 − 3 tr E tr E2 + 2 tr E3}

= λ1λ2λ3

(An invariant of a real matrix C is any real-valued function µ(C) with the property
µ(C) = µ(A−1CA) for all invertible matrices A).
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Chapter 2

Mass and Momentum

Mass: the property of a body that is a measure of the amount of material it contains and
causes it to have weight in a gravitational field.

In continuum mechanics, the mass of a body is continuously distributed over its volume and
is an integral of a density field ̺ : Ω̄0 → R

+ called the mass density. The total mass M(B)
of a body is independent of the motion ϕ, but the mass density ̺ can, of course, change as
the volume of the body changes while in motion. Symbolically,

M(B) =

∫

Ωt

̺ dx

where dx = volume element in the current configuration Ωt of the body.
Given two motions ϕ and ψ (see Figure 2.1), let ̺ϕ and ̺ψ denote the mass densities

in the configurations ϕ(Ω0) and ψ(Ω0), respectively. Since the total mass is independent
of the motion,

M(B) =

∫

ϕ(Ω0)
̺ϕ dx =

∫

ψ(Ω0)
̺ψ dx

This fact represents the principle of conservation of mass. The mass of a body B is thus an
invariant property (measuring the amount of material in B); the weight of B is defined as
gM(B) where g is a constant gravity field. Thus, a body may weigh differently in different
gravity fields (e.g. the earth’s gravity as opposed to that on the moon), but its mass is the
same.

2.1 Local Forms of the Principle of Conservation of Mass

Let ̺0 = ̺0(X) be the mass density of a body in its reference configuration and ̺ = ̺(x , t)
the mass density in the current configuration Ωt. Then

∫

Ω0

̺0(X) dX =

∫

Ωt

̺(x ) dx

17
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Ωo

Ωo( (ψ

ψ

ϕ ϕ (Ωo

(

Figure 2.1: Two motions ϕ and ψ.

(where the dependence of ̺ on t has been suppressed). But dx = detF(X) dX, so

∫

Ω0

[̺0(X) − ̺(ϕ(X)) detF(X)] dX = 0

and, therefore

̺0(X) = ̺(x ) detF(X)

This is the material description (or the Lagrangian formulation) of the principle of con-
servation of mass. To obtain the spatial description (or Eulerian formulation), we observe
that the invariance of total mass can be expressed as:

d

dt

∫

Ωt

̺(x , t) dx = 0

Changing to the material coordinates gives

0 =
d

dt

∫

Ω0

̺(x , t) detF(X, t) dX =

∫

Ω0

(̺ ˙detF + ˙̺ detF) dX

where ˙(·) = d(·)/dt. Recalling that ˙detF = detF div v, we have

0 =

∫

Ω0

detF

(
̺ div v +

∂̺

∂t
+ v · grad ̺

)
dX

from which we conclude:

∂̺

∂t
+ div (̺v) = 0

18



2.2. MOMENTUM

2.2 Momentum

The momentum of a material body is a property the body has by virtue of its mass and
its velocity. Given a motion ϕ of a body B of mass density ̺, the linear momentum I(B, t)
of B at time t and the angular momentum H(B, t) of B at time t about the origin 0 of the
spatial coordinate system are defined by

I(B, t) =

∫

Ωt

̺v dx

H(B, t) =

∫

Ωt

x × ̺v dx

Again, dx (= dx1dx2dx3) is the volume element in Ωt.
The rates of change of momenta (both I and H) are of fundamental importance. To

calculate rates, first notice that for any smooth field w = w(x , t),

d

dt

∫

Ωt

w̺dx =
d

dt

∫

Ω0

w(ϕ(X, t), t)̺(x , t) det F(X, t) dX =

∫

Ω0

dw

dt
̺0 dX =

∫

Ωt

dw

dt
̺ dx

Thus,

dI(B, t)
dt

=

∫

Ωt

̺
dv

dt
dx

dH(B, t)
dt

=

∫

Ωt

x × ̺
dv

dt
dx

19
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Chapter 3

Force and Stress in Deformable
Bodies

The concept of force is used to characterize the interaction of the motion of a material body
with its environment. More generally, as will be seen later, force is a characterization of
interactions of the body with agents that cause a change in its momentum. In continuum
mechanics, there are basically two types of forces: 1) contact forces, representing the contact
of the boundary surfaces of the body with the exterior universe, i.e. its exterior environment,
or the contact of internal parts of the body on surfaces that separate them, and 2) body
forces, acting on material points of the body by its environment.

Body Forces. Examples of body forces are the weight-per-unit volume exerted by the
body by gravity or forces per unit volume exerted by an external magnetic field. Body
forces are a type of external force, naturally characterized by a given vector-valued field f
called the body force density per unit volume. The total body force is then

∫

Ωt

f(x , t) dx

Alternatively, we can measure the body force with a density b per unit mass: f = ̺b. Then

∫

Ωt

f dx =

∫

Ωt

̺b dx.

Contact Forces. Contact forces are also called surface forces because the contact of one
body with another or with its surroundings must take place on a material surface. Contact
forces fall into two categories:

1. External contact forces representing the contact of the exterior boundary surface of
the body with the environment outside the body, and

2. Internal contact forces representing the contact of arbitrary parts of the body that
touch one another on parts of internal surfaces they share on their common boundary.

The Concept of Stress. There is essentially no difference between the structure of
external or internal contact forces; they differ only in what is interpreted as the boundary

21
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exterior

internal contact forces

external contact forces

B B
I

II

I

II

B

Figure 3.1: External and internal contact forces.

that separates a material body from its surroundings. Portion I of the partitioned body in
Fig. 3.1 could just as well been defined as body B and portion II would then be part of its
exterior environment.

Fig. 3.2 is an illustration of the discrete version of the various forces: a collection of rigid
spherical balls of weight W each resting in a rigid bowl and pushed downward by balancing
a book on the top ball of weight P. Explode the collection of balls into free bodies as
shown. The five balls are the body B. The exterior contact with the outside environment
is represented by the force P and the contact forces N representing the fact that the balls
press against the bowl and the bowl against the balls in an equal and opposite way. Then
P, N1, N2, N3 are external contact forces. The weights W are the body forces. Internally,
the balls touch one another on exterior surfaces of each ball. The action of a given ball on
another, is equal and opposite to the action of the other balls on the given balls. These
contact forces are internal. They cancel out (balance), when the balls are reassembled into
the whole body B.

In the case of a continuous body, the same idea applies, except that the contact of any
part of the body (part I say) with the complement (part II) is continuous (as there are now
a continuum of material particles in contact along the contact surface) and the nature of
these contact forces depends upon how (we visualize) the body is partitioned. Thus, at a
point x , if we separate B (conceptually) into bodies I and II with a surface AA defined with
an orientation given by a unit vector n, the distribution of contact forces at a point x on
the surface will be quite different than that produced by a different partitioning of the body

22
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Figure 3.3: The Cauchy hypothesis.

defined by a different surface BB though the same point x but with orientation defined by
a different unit vector m (see Fig. 3.3).

These various possibilities are captured by the so-called Cauchy hypothesis: there exists
a vector-valued surface (contact) force density

σ(n,x , t)

giving the force per unit area on an oriented surface Γ through x with unit normal n, at
time t. The convention is that σ(n,x , t) defines the force per unit area on the “negative”
side of the material (n is a unit exterior or outward normal) exerted by the material on
the opposite side (thus, the direction of σ on body II is opposite to that on I because the
exterior normals are in opposite directions – see Figure 3.4).

Thus, if the vector field σ(n,x , t) were known, one could pick an arbitrary point x in
the body (or, equivalently, in the current configuration Ωt) at time t, and pass a surface
through x with orientation given by the unit normal n. The vector σ(n,x , t) would then
represent the contact force per unit area on this surface at point x at time t. The surface Γ
through x partitions the body into two parts: the orientation of the vector σ(n,x , t) on

23
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Figure 3.4: The stress vector.

one part (at x ) is opposite to that on the other part. The vector field σ is called the stress
vector field and σ(n,x , t) is the stress vector at x and t for orientation n. The total force
on surface Γ is

∫

Γ
σ(n,x , t) dA,

dA being the surface area element.
The total force acting on body B and total moment about the origin 0, at time t when

the body occupies the current configuration Ωt, are, respectively,

F(B, t) =

∫

Ωt

f dx+

∫

∂Ωt

σ(n) dA

M(B, t) =

∫

Ωt

x × f dx+

∫

∂Ωt

x × σ(n) dA

where we have suppressed the dependence of F and σ on x and t.
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Chapter 4

The Principles of Balance of Linear
and Angular Momentum

The momentum balance laws are the fundamental axioms of mechanics that connect motion
and force:

The Principle of Balance of Linear Momentum

The time-rate-of-change of linear momentum I(B, t) of a body B at time t equals (or is
balanced by) the total force F(B, t) acting on the body :

dI(B, t)
dt

= F(B, t)

The Principle of Balance of Angular Momentum

The time-rate-of-change of angular momentum H(B, t) of a body B at time t equals (or
is balanced by) the total force M(B, t) acting on the body :

dH(B, t)
dt

= M(B, t)

Thus, for a continuous media

∫

Ωt

̺
dv

dt
dx =

∫

Ωt

f dx+

∫

∂Ωt

σ(n) dA

∫

Ωt

x × ̺
dv

dt
dx =

∫

Ωt

x × f dx+

∫

∂Ωt

x × σ(n) dA
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Figure 4.1: Tetrahedron τ for the proof of Cauchy’s Theorem.

4.1 Cauchy’s Theorem: The Cauchy Stress Tensor

Theorem: At each time t, let the body force density f : Ωt → R
3 be a continuous

function of x and the stress vector field σ = σ(n,x, t) be continuously differentiable with
respect to n for each x ∈ Ωt and continuously differentiable with respect to x for each n.
Then the principles of balance of linear and angular momentum imply that there exists
a continuously differential tensor field T : Ω̄t → M

3 (the set of square matrices of order
three) such that

σ(n,x , t) = T(x , t)n, ∀x ∈ Ω̄t, ∀n

and

T(x , t) = T(x , t)T , ∀x ∈ Ω̄t

Proof of Cauchy’s Theorem. The proof is classical: pick x ∈ Ωt. Since Ωt is open,
we can construct a tetrahedron τ with “vertex” at x with three faces parallel to the xi-
coordinate planes and with an exterior face F with unit normal n = ni ei, ni > 0 (see
Fig. 4.1).

The faces of τ opposite to the vertices i, i = 1, 2, 3, are denoted Fi and area(Fi) =
niarea(F ). According to the principle of balance of linear momentum,

∫

τ
f dx+

∫

∂τ
σ(n) dA−

∫

τ
̺
dv

dt
dx = 0

Let f = fiei, σ(n) = σi(n)ei, v = viei. Then, for each component of the above equation,
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and using the mean-value theorem,
∫

∂τ
σi(n,x ) dA =

∫

Fj=Fnj

σi(−ej,x ) dA+

∫

F
σi(n,x ) dA

= σi(−ej ,x
∗
j) nj area(F ) + σi(n, x̂ ) area(F )

for x ∗
j ∈ Fj and x̂ ∈ F , so that

∫

∂τ
σi(n,x ) dA =

∫

τ

(
̺
dvi(x )

dt
− fi(x )

)
dx, i = 1, 2, 3

Thus, since volume(τ) = C area(F )3/2, C a constant and i = 1, 2, 3,

∣∣njσi(−ej ,x
∗
j) + σi(n, x̂ )

∣∣ area(F ) ≤ C sup
x∈τ

∣∣∣∣̺(x)
dvi(x )

dt
− fi(x )

∣∣∣∣× area(F )3/2

Keeping n fixed, we shrink the tetrahedron τ to the vertex x by collapsing the vertices to
x (area(F ) → 0), and obtain

σi(n,x ) = −njσi(−ej ,x ), 1 ≤ i, j ≤ 3

or, since σ(n) = σi(n)ei,

σ(n,x ) = −njσ(−ej,x )

Now, for each vector σ(ej,x ), define functions Tij(x ) such that

σ(ej ,x ) = Tij(x )ei

Then

σi(n,x ) = Tij(x )nj , or σ(n,x ) = T(x )n

as asserted (by continuity, these hold for all x ∈ Ω̄t). The tensor T is of course the Cauchy
stress tensor. We will take up the proof that T is symmetric later (as an exercise), which
follows from the principle of balance of angular momentum. �

4.2 The Equations of Motion (Linear Momentum)

According to the divergence theorem,
∫

∂Ωt

Tn dA =

∫

Ωt

div T dx

Thus,
∫

∂Ωt

σ(n) dA =

∫

∂Ωt

Tn dA =

∫

Ωt

div T dx
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Figure 4.2: Mapping of volume and surface elements.

It follows that the principle of balance of linear momentum can be written,
∫

Ωt

̺
dv

dt
dx =

∫

Ωt

(f + div T)dx

where T is the Cauchy stress tensor. Thus

∫

Ωt

(div T + f − ̺
dv

dt
)dx = 0

But this must also hold for any arbitrary subdomain G ⊂ Ωt. Thus,

div T + f = ̺
dv

dt

or

div T(x , t) + f(x , t) = ̺(x , t)
dv

dt
(x , t)

Returning to the proof of Cauchy’s Theorem, we apply the principle of balance of angular
momentum to the tetrahedron and use the fact that div T + f− ̺dv/dt = 0. This leads to
the conclusion that

TT = T

Details are left as an exercise.

4.3 The Equations of Motion Referred to the Reference Con-
figuration: The Piola-Kirchhoff Stress Tensors

In the current configuration,

div T(x ) + f(x ) = ̺(x )

(
∂v(x )

∂t
+ v(x ) · grad v(x )

)
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CONFIGURATION: THE PIOLA-KIRCHHOFF STRESS TENSORS

where we have again not expressed the dependence on time t for simplicity. Here div and
grad are defined with respect to x ; i.e. the dependent variables are regarded as functions
of spatial position x (and t). We now refer the fields to the reference configuration:

f0(X) = f(x ) detF(X) (x = ϕ(X))

̺0(X) = ̺(x ) detF(X)

P(X) = detF(X) T(x ) F(X)−T

= T(x ) Cof F(X) (by the Piola transformation)

The tensor P(X) is called the First Piola-Kirchhoff Stress Tensor. Note that P is not
symmetric; however PFT = FPT since T is symmetric. Recalling earlier proof, we have

∂

∂Xj
Pij =

∂

∂Xj
(T Cof (F)) = detF

∂

∂Xℓ
Tik ·

∂xℓ
∂Xj

· F−T
kj + Tik

∂

∂Xj
�

�
�

�
�

��:0
((Cof F)kj)

= detF
∂

∂xk
Tik = detF div T

i.e.

Div P = detF div T

so

divT(x ) + f(x ) =
1

detF
(DivP + f0)(X) = ̺

dv

dt
(x ) = ̺0

∂2u

∂t2
(x )

1

detF

Thus, the equations of motion (linear and angular momentum) referred to the reference
configuration are:

Div P(X) + f0(X) = ̺0(X)ü(X)

P(X) FT (X) = F(X) PT (X)

Here the dependence of P, f0, ü, and F on time t is not indicated for simplicity; but note
that ̺0 is independent of t. Alternatively, these equations can be written in terms of a
symmetric tensor:

S(X) = S(X, t) = F(X)−1P(X) = detFF−1TF−T = F−1TCofF

The tensor S is the so-called Second Piola-Kirchhoff Stress Tensor. Then

Div F(X)S(X) + f0(X) = ̺0(X)ü(X)

S(X) = S(X)T
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In summary

Cauchy Stress: T = (detF)−1 P FT

= (detF)−1 F S FT

First Piola-Kirchhoff Stress: P = (detF) T F−T

= F S

Second Piola-Kirchhoff Stress: S = (detF) F−1 T F−T

= F−1 P

4.4 Power

A fundamental property of a body in motion subjected to forces is power, the work per unit
time developed by the forces acting on the body. Work is “force times distance” and power
is “force times velocity”. In continuum mechanics, the work per unit time – the power – is
the function P = P(t) defined by

P =

∫

Ωt

f · v dx+

∫

∂Ωt

σ(n) · v dA

where v is the velocity. Since

∫

∂Ωt

σ(n) · v dA =

∫

∂Ωt

Tn · v dA =

∫

Ωt

(v · div T + T : grad v) dx

we have

P =

∫

Ωt

v · (div Tf) dx+

∫

Ωt

T : D dx =

∫

Ωt

v · ̺dv
dt
dx+

∫

Ωt

T : D dx

=
d

dt

(
1

2

∫

Ωt

̺v · v dx

)
+

∫

Ωt

T : D dx =
dκ

dt
+

∫

Ωt

T : D dx

where κ is the kinetic energy

κ =
1

2

∫

Ωt

̺v · v dx

and

D = (grad v)sym =
1

2
(grad v + grad vT )

Note that T : grad v = T : (D + W) = T : D. The quantity T : D is called the stress
power.
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In summary, the total power of a body B in motion is the sum of the time-rate-of change
of the kinetic energy and the total stress power:

P =
dκ

dt
+

∫

Ωt

T : D dx

Equivalently,

∫

Ωt

f · v dx+

∫

∂Ωt

Tn · v dA =
dκ

dt
+

∫

Ωt

T : D dx

In terms of quantities referred to the reference configuration,

∫

Ω0

f0 · u̇ dX +

∫

∂Ω0

Pn0 · u̇ dA0 =

∫

Ω0

P : Ḟ dX +
d

dt

1

2

∫

Ω0

̺0u̇ · u̇ dX

In terms of the second Piola-Kirchhoff stress tensor, the stress power is

∫

Ωt

T : D dx =

∫

Ω0

T : grad vdetF dX

But

T : grad vdetF = Tij
∂

∂Xk

(
∂ϕi
∂t

)
· ∂Xk

∂xj
detF

= TijḞikF
−1
kj detF

= Ḟik(Tij detFF−1
kj )

= ḞikPik

= FT Ḟ : S

and

FT Ḟ : S =

[
1

2
(FT Ḟ + Ḟ

T
F) +

1

2
(FT Ḟ − Ḟ

T
F)

]
S = Ė : S + 0 = S : Ė

Thus
∫

Ωt

T : D dx =

∫

Ω0

S : Ė dX

and, finally,

∫

Ω0

f0 · u̇ dX +

∫

∂Ω0

FSn0 · u̇ dA =

∫

Ω0

S : Ė dX +
d

dt

(
1

2

∫

Ω0

̺0u̇ · u̇ dX

)
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Chapter 5

The Principle of Conservation of
Energy

Energy is a quality of a physical system (e.g. a deformable body) measuring its capacity
to do work: a change in energy causes work to be done by the forces acting on the system.
A change in energy in time produces a rate of work – i.e. power. So the rate of change
of the total energy of a body due to “mechanical processes” (those without a change in
temperature) is equal to the mechanical power developed by the forces on the body due to
its motion. The total energy is the sum of the kinetic energy (the energy due to motion) κ
and the internal energy Eint due to deformation:

Total energy = κ+ Eint

The internal energy depends on the deformation, temperature gradient, and other physical
entities. The precise form of this dependency varies from material to material and depends
upon the physical “constitution” of the body. In continuum mechanics, it is assumed that
a specific internal energy density (energy density per unit mass) exists so that

Eint =

∫

Ω0

̺0e0(X, t) dX =

∫

Ωt

̺e(x , t) dx

Recall that the kinetic energy is given by

κ =
1

2

∫

Ω0

̺0 u̇ · u̇ dX =
1

2

∫

Ωt

̺v · v dx

and that the power P is

P =
dκ

dt
+

∫

Ωt

T : D dx =
dκ

dt
+

∫

Ω0

F S : Ḟ︸ ︷︷ ︸
= S:Ė

dX

The change in unit time of the total energy (the time-rate-of-change of κ+Eint) produces
power and heating of the body. The heating per unit time Q is of the form,

Q =

∫

∂Ωt

−q · n dA+

∫

Ωt

r dx =

∫

∂Ω0

−q0 · n0 dA0 +

∫

Ω0

r0 dx
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where q is the heat flux entering the body across the surface ∂Ωt (minus q indicated heat
entering and not leaving the body) and r is the heat per unit volume generated by internal
sources (e.g. chemical reactions) and q0 and r0 are their counterparts referred to the
reference configurations

q detF F−T = q Cof F = q0

r detF = r0

The principle of conservation of energy asserts that the time-rate-of-change of the total
energy is balanced by (equals) the power plus the heating of the body:

d

dt
(κ+ Eint) = P +Q

5.1 Local Forms of the Principle of Conservation of Energy

Recalling the definitions of κ, Eint, P, and Q we have

d

dt

(
1

2

∫

Ωt

̺v · v dx+

∫

Ωt

̺e dx

)
=

∫

Ωt

T : D dx+
dκ

dt
−
∫

∂Ωt

q · n dA+

∫

Ωt

r dx

Thus
∫

Ωt

(
̺
de

dt
− T : D + div q− r

)
dx = 0

or

̺
de

dt
= T : D− div q + r

For equivalent results referred to the reference configuration Ω0, we have

d

dt

(
κ+

∫

Ω0

̺0e0 dX

)
=

∫

Ω0

S : Ė dX +
dκ

dt
−
∫

∂Ω0

q0 · n0 dA0 +

∫

Ω0

r0 dX

or
∫

Ω0

(
̺0ė0 − S : Ė + Div q0 − r0

)
dX = 0

Thus, locally,

̺0ė0 = S : Ė − Div q0 + r0
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Chapter 6

Thermodynamics of Continua and
the Second Law

In contemplating the thermal and mechanical behavior of the physical universe, it is con-
venient to think of thermomechanical systems as some open region S of three-dimensional
Euclidean space containing, perhaps, one or more deformable bodies. Such a system is
closed if it does not exchange matter with the complement of S, called the exterior of S.
There can be an exchange of energy between S and its exterior due to work of external
forces and heating (cooling) of S by the transfer of heat from S to its exterior. A system
is a thermodynamic system if the only exchange of energy with its exterior is a possible
exchange of heat and of work done by body and contact forces acting on S. The thermody-
namic state of a system S is characterized by the values of so-called thermodynamic state
variables, such as temperature, mass density, etc. which reflect the mechanical and thermal
condition of the system; we may write T (S, t) for the thermodynamic state of system S
at time t. If the thermodynamic system does not evolve in time, it is in thermodynamic
equilibrium. The transition from one state to another is a thermodynamic process.

Thus, we may think of the thermodynamic state of a system as the values of certain fields
that provide all of the information needed to characterize the system: stress, strain, velocity,
etc., and quantities that measure the hotness or coldness of the system and possible rates
of change of these quantities. The absolute temperature θ ∈ R, θ > 0 provides a measure of
the hotness of a system and a characterization of the thermal state of a system. Two closed
systems S1 and S2 are in thermal equilibrium with each other (and with a third system S3)
if they share the same value of θ. Thus, θ is a state variable. The second quantity needed
to define the thermodynamic state of a system is the entropy, which represents a bound on
the amount of heating a system can receive at a given temperature θ.

In continuum mechanics, the total entropy H of a body is the integral of a specific
entropy density η (entropy density per unit mass):

H =

∫

Ωt

̺η(x , t) dx

In classical thermodynamics, the change in entropy between two states T (S, t1) and T (S, t2)
of a system measures the quantity of heat received per unit temperature. When θ =
constant, the classical condition is

H(S, t1) −H(S, t2) −
Q

θ
= 0
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CHAPTER 6. THERMODYNAMICS OF CONTINUA AND THE SECOND LAW

for reversible processes, and

H(S, t1) −H(S, t2) −
Q

θ
≥ 0

for all possible processes, H(S, t) being the total entropy of system S at time t and Q being
the heating.

In continuum mechanics, we analogously require

dH

dt
+

∫

∂Ωt

1

θ
q · n dA−

∫

Ωt

r

θ
dx ≥ 0

This is called the Second Law of Thermodynamics: the total entropy production per unit
time is always ≥ 0. Locally, we have

∫

Ωt

(
̺
dη

dt
+ div

q

θ
− r

θ

)
dx ≥ 0

or

̺
dη

dt
+ div

q

θ
− r

θ
≥ 0

In the material description,

̺0η̇0 + Div
q0

θ
− r0
θ

≥ 0

This relation is called the Clausius-Duhem inequality.
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Material Spatial

(LAGRANGIAN) (EULERIAN)

Conservation of Mass

̺0 = ̺detF
∂̺

∂t
+ div (̺v) = 0

Conservation of Linear Momentum

Div FS + f0 = ̺0∂
2u/∂t2 div T + f = ̺

(
∂v

∂t
+ v · grad v

)

Conservation of Angular Momentum

S = ST T = TT

Conservation of Energy

̺0ė0 = S : Ė − Div q0 + r0 ̺
∂e

∂t
+ v · grad e = T : D− div q + r

Second Law of Thermodynamics

(The Clausius-Duhem Inequality)

̺0η̇0 + Div
q0

θ
− r0

θ
≥ 0 ̺

∂η

∂t
+ v · grad η + div

q

θ
− r

θ
≥ 0

Figure 6.1: Summary.
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Chapter 7

Constitutive Equations

Given initial data (i.e. given all of the information needed to describe the body B and its
thermodynamic state S while it occupies its reference configuration at time t = 0),

(Ω0, ∂Ω0, f0(X, t), t ∈ [0, T ], v0 = u̇(X, 0), θ0(X) = θ(X, 0), . . .),

we wish to use the equations of continuum mechanics (conservation of mass, energy, balance
of linear and angular momentum, the second law of thermodynamics) to determine the
behavior of the body (the motion, deformation, temperature, stress, heat flux, entropy, . . . )
at each X ∈ Ω̄0 for any time t in some interval [0, T ].

Unfortunately, we do not have enough information to solve this problem. The balance
laws apply to all materials, and we know that different materials respond to the same stimuli
in different ways depending on their constitution. To complete the problem (to “close” the
system of equations), we must supplement the basic equations with constitutive equations
that characterize the material(s) of which the body is composed.

In recognizing that additional relations are needed to close the system, we ask what
variable can we identify as natural “dependent variables” and which are “independent”.
Our choice is to choose as primitive (state) variables those features of the response naturally
experienced by observation – by our physical senses: the motion (or displacement), the rate
of motion, the deformation or rate of deformation, the hotness or coldness (the temperature)
or its gradients, etc., or the “histories” of these quantities. If we then knew how, for example,
the stress, heat flux, internal energy, and entropy were dependent on the state variables for
a given material, we would hope to have sufficient information to completely characterize
the behavior of the body under the action of given stimuli (loads, heating, etc.). Thus, we
seek constitutive equations of the type,

T = T (x , t,∧)

q = Q (x , t,∧)

e = ξ (x , t,∧)

η = H (x , t,∧)

where, for the moment, ∧ denotes everything we might expect to influence the stress,
heat flux, internal energy, and entropy at a point x ∈ Ωt at time t (for example, ∧ =
(F,C, θ,∇θ,L,D, . . .)). The functions T, Q, E , H defining the constitutive equations are
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history

u(t−s)

s

t = the current state

Figure 7.1: Time history.

called response functions (or, response functionals).

7.1 Rules and Principles for Constitutive Equations

What rules-of-thumb or even fundamental principles govern the forms of the response func-
tions for real materials? We list some of the most important rules and principles:

1. The Principle of Determinism
The behavior of a material at a point X occupying x at time t is determined by the history
of the primitive variables ∧.

In other words, the conditions that prevail at (x , t) depend upon the past behavior of the
array ∧ (not the future). In general, a “history” of a function u = u(x , t), up to current
time t, is the set

ut(s) = {u(x , t− s), s ≥ 0}

The history from the reference configuration is then u(x , t−s), t ≥ s ≥ 0 (see Fig. 7.1). Then
we should, in general, replace ∧ by ∧t(s) in the constitutive equations unless conditions
prevail (in the constitution of the material) that suggest the response depends only on values
at the current time.

2. The Principle of Material Frame Indifference – or Principle of Objectivity
The form of the constitutive equations must be invariant under changes of the frame of
reference: they must be independent of the observer.

For example, if we rotate the coordinates x into a system x ∗ (and translate the origin)

x ∗ = Q(t)x + c(t)

QT (t) = Q−1(t)




 ⇒ “Change of the Observer”
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and change the clock: t∗ = t − a, the constitutive functions should remain invariant. For
example,

if T = T (x , t), then T∗ = T (x ∗, t∗)

where T is the same function in both equations and

T∗ = Q(t)TQ(t)T

3. The Principle of Physical Consistency
The constitutive equations cannot violate or contradict the physical principles of mechanics
(the conservation of mass, energy, balance of momentum, or the Clausius-Duhem inequal-
ity).

4. The Principle of Material Symmetry
For every material, there is a group G of unimodular transformations of the material coor-
dinates, called the isotropy group of the material, under which the forms of the constitutive
functions remain invariant.

• The unimodular tensors H are those for which detH = ±1.

• The group G is a group of unimodular linear transformations with group operation =
composition (matrix multiplication). Thus,

1. A,B ∈ G ⇒ AB ∈ G
2. A(BC) = (AB)C

3. ∃1 ∈ G such that A · 1 = A

4. ∀A ∈ G,∃A−1 ∈ G, such that AA−1 = 1

• Let O+ be the group of rotations (the proper orthogonal group). If, at a material
point X, the symmetry group G = O+, then the material is isotropic at X̄; otherwise,
it is anisotropic.

5. The Principle of Local Action
The dependent (primitive) constitutive variables at X are not affected by the actions of
independent variables ((T,q, e, η) for example) at points distant from X.

There are other rules. For example:

Dimensional consistency. Terms in the constitutive equations must, of course, be di-
mensionally consistent (this can be interpreted as a corollary to Principle 3). Beyond this,
dimensional analysis can be used to extract information on the constitutive variables.

Existence, well-posedness. The constitutive equations must be such that there exist
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CHAPTER 7. CONSTITUTIVE EQUATIONS

solutions to properly-posed boundary and initial-value problems resulting from use of the
equations of continuum mechanics.

Equipresence. When beginning to characterize the response functions of a material, be
sure that the dependent variables in ∧ are “equally present” — in other words, until evi-
dence from some other source suggests otherwise, assume that all the constitutive functions
for T, q, e, η depend on the same full list of variables ∧.
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Chapter 8

Examples and Applications

8.1 Principle of Material Frame Indifference

8.1.1 Solids

Consider a “change in the observer”:

x ∗(t) = Q(t)x (t) + c(t)

Q(t)−1 = Q(t)T

where x (t) = ϕ(X, t). Clearly F∗ = ∇x ∗ and F = ∇x , so that

F∗ = QF and detF∗ = detF

If n∗ = Qn and σ∗(n∗) = Qσ(n) then

T∗n∗ = QTQTn∗ ⇒ T∗ = QTQT

Suppose

T = T (F)

(Local Action ⇒ T depends on∇ϕ, not ϕ)

Then

T∗ = T (F∗)

Thus, the material response function is independent of the observer, if, ∀Q(t), Q(t)T =
Q(t)−1, we have

T (QF) = QT (F)QT

Application: If T (F) = T, then T (F) = RT (U)RT , since T (RTF) = RT (RTRU)RT

= RT (U)RT . This shows that we can also express T as a function of U or, since U2 = C,
of C or E: i.e. T = T (F) = RT (U)RT = FU−1

T (C1/2)U−1FT = FT̂ (C)FT . �
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8.1.2 Fluids

Suppose

T = F(L) (a fluid)

and F(0) = −p I, p = pressure (when there is no motion, we want the stress field to be a
“hydrostatic” pressure, p = p(x , t)). Suppose also that

tr L = div v = 0

Then

T = −p I + F0(D)

F0(0) = 0. If F0 is linear in D, then a necessary and sufficient condition that F0(D)
is invariant under a change of the observer is that there exists a constant (or scalar) µ =
µ(t) > 0, such that F0(D) = 2µD. Then

T = −p I + 2µD

This is the classical constitutive equation for Cauchy stress in a Newtonian fluid (a viscous
incompressible fluid) where µ is the viscosity of the fluid.

8.2 The Navier-Stokes Equations for Incompressible Flow

Conservation of Mass

∂̺

∂t
+ div (̺v) = 0

For an incompressible fluid, we have

0 =
d

dt

∫

Ωt

dx =

∫

Ω0

˙detF dX =

∫

Ω0

detF div v dX =

∫

Ωt

div v dx

which implies that div v = 0. Thus

0 =
∂̺

∂t
+ v · grad ̺+ ̺div v =

∂̺

∂t
+ v · grad ̺ =

d̺

dt
⇒ ̺ is constant.

Conservation of Momentum

̺
∂v

∂t
+ ̺v · grad v− div T = f, ∀(x , t) ∈ Ωt × (0, T )

T = TT
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Constitutive Equation

T = −p I + 2µD (p = π)

D =
1

2

(
grad v + (grad v)T

)

The Navier-Stokes Equations

̺
∂v

∂t
+ ̺v · grad v − µ∆v + grad p = f

div v = 0

where ∆ = vector Laplacian = div grad.

Application: An Initial-Boundary-Value Problem

F

B

A

E D

C

Figure 8.1: Geometry of the backstep channel flow.

Initial conditions:

v(x , 0) = v0(x )

where the initial field must satisfy div v0 = 0, which implies that

∫

∂Ω0

v0 · n dA = 0, i.e. v0 · n = 0 on ∂Ω0.

Boundary conditions:

1. On segment BC and DE ∪ EF ∪ FA, we have the no-slip boundary condition v = 0.
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2. On the “in-flow boundary” AB, we prescribe the Poiseuille flow velocity profile (see
Fig. 8.2):






v1(0, x2, t) =

(
1 −

(
2x2

a

)2
)
U0

v2(0, x2, t) = 0

3. On the “out-flow boundary” CD, there are several possibilities. A commonly used
one is






−p+ µ
∂v1
∂x1

∣∣∣∣
x1=L

= Te1|x1=L
= 0

v2(L, x2, t) = 0

where L is the length of the channel, i.e. L = |BC|.

a

Uo

Figure 8.2: Poiseuille flow velocity profile.

recirculation

Figure 8.3: Recirculation in backstep channel flow.

8.3 Application of the Principle of Physical Consistency

Instead of writing the equations governing the conservation of energy or the Clausius-Duhem
inequality in terms of the internal energy e per unit volume, it is often convenient to replace
e by the Helmholtz free energy

ψ = e− η θ
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8.4. HEAT CONDUCTION

Then the Clausius-Duhem inequality becomes (e.g.)

−̺0ψ̇0 − ̺0η0θ̇ + S : Ė − 1

θ
q0 · ∇θ ≥ 0 (See Exercise)

Suppose we have a constitutive equation for ψ0 which we initially take to be of the form

ψ0 = Ψ(E, θ,∇θ)

Then

ψ̇0 =
∂Ψ

∂E
: Ė +

∂Ψ

∂θ
θ̇ +

∂Ψ

∂∇θ : ∇θ̇

and

−̺0

(
η0 +

∂Ψ

∂θ

)
θ̇ +

(
S− ̺0

∂Ψ

∂E

)
: Ė + ̺0

∂Ψ

∂∇θ : ∇θ̇ − 1

θ
q0 · ∇θ ≥ 0

This implies that

η0 = −∂Ψ

∂θ
, S = ̺0

∂Ψ

∂E
,

∂Ψ

∂∇θ = 0

Thus, the Clausius-Duhem inequality allows us to 1) conclude that Ψ
does not depend on ∇θ, and 2) conclude that η0 and S can be charac-
terized through a single energy functional Ψ.

Remark: The quantity

δ0 = S : Ė − ̺0(ψ̇0 + η0θ̇) = Div q0 − r0 + ̺0θη̇0

is called the internal dissipation. According to the second law (Clausius-Duhem)

δ0 −
1

θ
q0 · ∇θ ≥ 0

This is the Clausius-Planck inequality. If δ0 = 0, it asserts that heat must flow from hot to
cold. But δ0 may not be zero!

8.4 Heat Conduction

Ignoring motion and deformation for the moment, consider a rigid body being heated by
some outside source. The constitutive equations are

ψ0 = Ψ(θ) =
1

2
c θ2 (c constant)

q0 = k∇θ (Fourier’s Law)
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Then:

η0 = −∂Ψ

∂θ
= −c θ, and S = ̺0

∂Ψ

∂E
= 0 (irrelevant)

In a reversible process, δ0 = 0. So

Div q0 − r0 + θ̺0η̇0 = 0

Setting θη̇0 = −c θθ̇ ≈ −c θ0θ̇, where θ0 = reference temperature > 0, we get

̺0c0
∂θ

∂t
−∇ · k∇θ = −r0

where c0 = c θ0. This is the classical heat conduction (diffusion) equation.

8.5 Theory of Elasticity

We consider a deformable body B under the action of forces (body forces f and prescribed
contact forces σ(n,x ) = g(x ) on ∂Ω0). The body is constructed on a material which is
homogeneous and isotropic and is subjected to only isothermal (θ = const.) and adiabatic
(q = 0) processes. The sole constitutive equation is

ψ = free energy = Ψ̂(X, t, θ,E) = Ψ(E)

The constitutive equation for stress is thus

S =
∂Ψ(E)

∂E

∣∣∣∣
sym

In this case, the free energy is called the stored energy function, or the strain energy function.
Since Ψ() (and ∂ψ/∂E) must be form–invariant under changes of the observer, and since B
is isotropic, Ψ(E) must depend on invariants of E:

Ψ(E) = W (IE , IIE, IIIE)

Or, since E = (C − I)/2, we could also write Ψ as a function of invariants of C

Ψ = Ŵ (IC , IIC , IIIC)

The constitutive equation for stress is then

S =
∂W

∂IE
· ∂IE
∂E

+
∂W

∂IIE
· ∂IIE
∂E

+
∂W

∂IIIE
· ∂IIIE
∂E

=
∂Ŵ

∂IC
· ∂IC
∂C

+
∂Ŵ

∂IIC
· ∂IIC
∂C

+
∂Ŵ

∂IIIC
· ∂IIIC
∂C

48



8.5. THEORY OF ELASTICITY

and we note that

∂IE
∂E

= I

∂IIE
∂E

= (tr E−1)I −E−TCof E

∂IIIE
∂E

= Cof E

Materials for which the stress is derivable from a stored energy potential are called hypere-
lastic materials.

The governing equations are

Div

[
(I + ∇u)

∂W

∂E

∣∣∣∣
sym

]
+ f0 = ̺0

∂2u

∂t2

with

F = (I + ∇u)

S =
∂W

∂E

∣∣∣∣
sym

= T (IE, IIE, IIIE,E)

E =
1

2
(∇u + ∇uT + ∇uT∇u)

Linear Elasticity

E ≈ e =
1

2
(∇u + ∇uT )

W =
1

2
Eijkℓekℓ eij

Sij =
∂W

∂eij
= Eijkℓekℓ = Eijkℓ

∂uk
∂Xℓ

(Hooke’s Law)

Eijkℓ = Ejikℓ = Eijℓk = Ekℓij

Then, for small strains/displacements,

∂

∂Xj

(
Eijkℓ

∂uk
∂Xℓ

)
+ f0i = ̺

∂2ui
∂t2

For isotropic materials,

Eijkℓ = λδijδrs + µ(δikδjℓ + δiℓδjk)
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where λ, µ are the Lamé constants:

λ =
νE

(1 + ν)(1 − 2ν)
, µ =

E

2(1 + ν)

E is the Young’s Modulus and ν the Poisson’s Ratio.

Then

S = λ (tr E)I + 2µE = λ div u I + 2µ(∇u)sym

Sij = λ δij

(
∂uk
∂Xk

)
+ µ

(
∂ui
∂Xj

+
∂uj
∂Xi

)

and the Lamé equations of elastostatics (∂2u/∂t2 = 0) are

λ
∂2uk

∂Xj∂Xk
+ µ

(
∂2ui

∂Xj∂Xj
+

∂2ui
∂Xj∂Xi

)
= f0j, 1 ≤ i, j ≤ 3
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8.6 Exercises

1. It is often considered useful to write the first and second laws of thermodynamics in
terms of the so-called free energy rather than the internal energy. The scalar field,

ψ = e− θη

is called the Helmholtz free energy (per unit volume). Show that

dψ

dt
= T : D− div q + r − θ

dη

dt
− η

dθ

dt

and that

− dψ

dt
− η

dθ

dt
+ T : D − 1

θ
q · ∇θ ≥ 0

or, equivalently,

− ψ̇0 − η0θ̇ + S : Ė − 1

θ
q0 · ∇θ ≥ 0

2. Consider the small deformations and heating of a thermo-elastic solid constructed of
a material characterized by the following constitutive equations:

Free energy: ψ0 = 1
2λ(tr e)2 + µe : e + c(tr e)θ + c0

2 θ
2

Heat Flux: q0 = k∇θ

where

e =
1

2
(∇u + ∇uT ) = the “infinitesimal” strain tensor (≈ E)

u = the displacement field

θ = the temperature field

λ, µ, c, c0, k = material constants

A body B is constructed of such a material and is subjected to body forces f0 and to
surface contact forces g on a portion Γg of its boundary Γg ⊂ ∂Ω0. On the remainder
of its boundary, Γu = ∂Ω0\Γg, the displacements u are prescribed as zero (u = 0 on
Γu). The mass density of the body is ̺0, and, when in its reference configuration at
time t = 0, u(x , 0) = u0(x ), ∂u(x , 0)/∂t = v0(x ), x ∈ Ω0, where u0 and v0 are given
functions. A portion Γq of the boundary is heated, resulting in a prescribed heat flux
h = q ·n, and the complementary boundary, Γθ = ∂Ω0\Γq is subjected to a prescribed
temperature θ(x , t) = τ(x , t), x ∈ Γθ (e.g. is immersed in ice water).

Develop a mathematical model of this physical phenomena (a set of partial differential
equations, boundary and initial conditions): the dynamic, thermomechanical behavior
of a thermoelastic solid.
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Chapter 9

Assignments

Things you should know:

• Linear algebra and matrix theory

• Vector calculus

• Index notation

• Introductory real analysis

Index Notation and Symbolic Notation

• Let ei, i = 1, 2, 3 be an orthonormal basis, i.e.

ei · ej = δij =

{
1, if i = j
0, if i 6= j

• Let a be a vector: a = ai ei (repeated indices are summed). Two vectors a and b are
equal, i.e. a = b if ai = bi, i = 1, 2, 3.

• Cross product: a × b = Eijk ai bj ek

Eijk =






1, if ijk = even permutation
−1, if ijk = odd permutation

0, if ijk is not a permutation

• Nabla: ∇ = ek
∂

∂xk

• Divergence of a vector (denoted div v or ∇ · v):

∇ · v = ek
∂

∂xk
· vjej =

∂vj
∂xk

ek · ej =
∂vj
∂xk

δkj =
∂vk
∂xk

(= vk, k or ∂kvk)

• Curl of a vector (denoted curl v or ∇× v):

∇× v = Eijk
∂

∂xi
vjek = Eijkvj, iek = Eijk(∂ivj)ek

53



• The following relations hold:

δii = 3

δijδjk = δik

EijkEijm = 2δkm

EijkEimn = δjmδkn − δjnδkm

EijkEijk = 6

• Typical identities:

1. (v · ∇)v = 1
2∇(v · v) − v× (∇× v)

2. ∇× (v × w) = (w · ∇)v + v · (∇ ·w) − w · (∇ · v) − (v · ∇)w

• Tensors:

ei ⊗ ej = tensor product of ei and ej

A = second-order tensor =




∑

i,j



Aijei ⊗ ej = Aij ei ⊗ ej (Aij = ei · Aej)

B = third-order tensor = Bijk ei ⊗ ej ⊗ ek
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Assignment 1

Vectors and Index Notation

1. Prove that:

(v · ∇)v =
1

2
∇(v · v) − v × (∇× v)

2. Prove that:

∇× (v × w) = (w · ∇)v + v(∇ · w) −w(∇ · v) − (v · ∇)w

Vectors and Inner Product Spaces

3. Give a complete definition and a non-trivial example of

(a) a real vector space

(b) an inner product space

(c) a linear transformation from a vector space U into a vector space V

Tensors

4. Let V be an inner product space. A tensor is a linear transformation from V into V .
If T is a tensor, Tv denotes the image of the vector v in V :

Tv = T(v) ∈ V

Show that the class L(V,V) of all linear transformations of V into itself is also a vector
space with vector addition and scalar multiplication defined as follows:

S,T ∈ L(V, V ) :

S + T = R ⇔ Rv = Sv + Tv

αS = R ⇔ Rv = α(Sv)

∀v ∈ V, ∀α ∈ R

(0 ∈ L(V, V ) : 0v = 0 ∈ V )

Tensor Product

5. The tensor product of two vectors a and b is the tensor, denoted a ⊗ b, that assigns
to each vector c the vector (b · c)a; that is

(a ⊗ b)c = (b · c)a

5.1 Show that a ⊗ b is a tensor and that

(a ⊗ b)T = b⊗ a

(a ⊗ b)(c ⊗ d) = (b · c)(a ⊗ d)

55



5.2 If {e1, e2, e3} is an orthonormal basis (ei ·ej = δij , 1 ≤ i, j ≤ 3), ‖ei‖2 = ei ·ei =
1), then show that

(ei ⊗ ei)(ej ⊗ ej) =

{
0, if i 6= j

ei ⊗ ei, if i = j
= “δijei ⊗ ej”

5.3 For an arbitrary tensor A, and for the orthonormal basis {e1, e2, e3},

A =
∑

i,j

Aij ei ⊗ ej

where

Aij = ei · Aej

The array [Aij ] is the matrix characterizing A for this particular choice of a basis
for V (= R

3). If A and B are two (“second-order”) tensors and [Aij ], [Bij ] are
their matrices corresponding to a basis {e1, e2, e3} of V , define (construct) the
rules of matrix algebra:

(a) A + B = C ⇒ [Aij ] + [Bij ] = [?]

(b) AB = C (AB = A ◦ B)

(c) A0 = C (C =?) (0 = the zero element of L(V, V )).

(d) AC = I (I is the identity tensor : AI = IA = A, and C = A−1)

(e) AT = C (C =?) (AT is the transpose of A: it is the unique tensor such that
Av · u = v ·ATu, “·” being the vector inner product in R

3).

6. The inner product(“dot-product”) of two vectors u,v ∈ V = R
3 is denoted u·v. It is a

symmetric, positive-definite, bilinear form on V . If u =
∑3

i=1 uiei and v =
∑3

i=1 viei,
for an orthonormal basis {ei}, then u·v =

∑3
i=1 uivi. Moreover, the (Euclidean) norm

of u (v) is ‖u‖ =
√

u · u (‖v‖ =
√

v · v).

The space L(V, V ) of second-order tensors can be naturally equipped with an inner
product as well, and hence a norm. The construction is as follows:

i) The trace of the tensor product of two vectors u and v is the linear operation

tr(u⊗ v)
def
= u · v

Likewise, the trace of a tensor A ∈ L(V, V ) is defined by

trA = tr




∑

ij

Aij ei ⊗ ej



 =
∑

ij

Aij tr ei ⊗ ej =
∑

ij

Aijδij =
∑

i

Aii
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ii) The trace of the composition of two tensors A,B ∈ L(V, V ) is then

tr(AB) =
∑

ij

AijBji

We denote

A : B = tr(ATB) =
∑

ij

AijBij

(a) Show that A : B (the operation “:”) defines an inner product on L(V, V )

(b) Define the associated norm ‖A‖ of A ∈ L(V, V )

(c) Show that

tr A = tr AT

(d) Show that (trivially)

I : A = tr A (I = identity tensor)

(u ⊗ v) : (q ⊗ p) = (u · q)(v · p)

57



Assignment 2

a

x3

x2

O

Ω0

a

e2

e1
x1

e3

a

Figure 9.1: The cube Ω0 = (0, a)3.

Kinematics of Continuous Media

1. The reference configuration of a deformable body B is the cube Ω0 = (0, a)3 with
the origin of the spatial and material coordinates at the corner, as shown in Fig 9.1.
Consider a motion ϕ of the body defined by

ϕ(X) =
3∑

i=1

ϕi(X)ei

where

ϕ1(X) = X1 +
∆

2

(
X2

a

)2

ϕ2(X) = X2

ϕ3(X) = X3

where ∆ is a real number (a parameter possibly depending on time t).

For this motion,

(a) Sketch the deformed shape (i.e. sketch the current configuration) in the X1–X2

plane for ∆ = a.

Then compute the following:

(b) the displacement field u

(c) the deformation gradient F

(d) the deformation tensor C
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(e) the Green strain tensor E

(f) the extensions ei, i = 1, 2, 3

(g) sin γ12, where γ12 is the shear in the X1–X2 plane.

Determinants

2. Let A ∈ L(V, V ) be a second order tensor with a matrix [Aij ] relative to a basis
{ei}3

i=1 (i.e. the Aij are components of A with respect to {ei ⊗ ej}). For n = 3, the
determinant of [Aij ] is defined by

det[Aij ] =
1

6

∑

ijk
rst

EijkErstAirAjsAkt

where

Eijk






1 if {i, j, k} is an even permutation of {i, j, k}
−1 if {i, j, k} is an odd permutation of {i, j, k}

0 if {i, j, k} is not a permutation of {i, j, k}
(i.e. if at least two indices are equal).

The determinant of the tensor A is defined as the determinant of its matrix compo-
nents Aij:

detA = det[Aij ]

This definition is independent of the choice of basis {ei} (i.e. detA is a property of
A invariant under changes of basis).

Show that

(a) det(AB) = (detA)(detB) (for n=3 is sufficient)

(b) detAT = detA

detAB = detA detB

Take n = 3:

detA =
1

6
EkℓmEabcAkaAℓbAmc

detB =
1

6
EkℓmEdefBkdBℓeBmf

But

Ekℓm detA = EabcAkaAℓbAmc
Ekℓm detB = EdefBkdBℓeAmc
(for example: detA = EabcA1aA2bA3c)
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Note that EkℓmEkℓm = 6. Thus,

Ekℓm detA Ekℓm detB

= 6detAdetB

= 6 EdefEabcAkaBkd · AℓbBeℓ · AmcBfm
= 6detAB

�

Cofactor and Inverse

3. For A ∈ L(V, V ) and Aij the components of A relative to a basis {ei}, i = 1, 2, . . . , n,
let A1

ij be the elements of a matrix of order (n− 1) obtained by deleting the ith row
and jth column of [Aij ]. The scalar

dij = (−1)i+j det[A1
ij ]

is called the (i, j)–cofactor of [Aij ] and the matrix of cofactors = Cof A = [dij ] is
called the cofactor matrix of A.

(a) Show that

A(Cof A)T = (detA)I

(it is sufficient to show this for n = 3 by construction)

(b) Show (trivially) that for A invertible,

A−1 = (detA)−1(Cof A)T

(c) For n = 3, show that

(Cof A)kt =
1

2

∑

ijk
rst

EijkErstAirAjs, 1 ≤ k, t ≤ 3

Orthogonal Transformation

4. A tensor Q ∈ L(V, V ) is orthogonal if it preserves inner products, in the sense that

Qu · Qv = u · v

∀u,v ∈ V (≈ R
3). Show that a necessary and sufficient condition that Q be orthog-

onal is that

QQT = QTQ = I

or, equivalently,

QT = Q−1
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5. Confirm that detA is an invariant of A in the following sense: if

A =
∑

i,j

Aij ei ⊗ ej =
∑

i,j

Āij ēi ⊗ ēj

where

ēi = Qei, i = 1, 2, 3, Q = an orthogonal tensor,

then

det[Aij ] = det[Āij]

Review of Vector and Tensor Calculus

6. Let U and V be finite-dimensional normed spaces and let f be a function from U into
V . We say that f is differentiable at u ∈ U if there exists a linear functional D f on
V such that

Df(u) · v = lim
θ→0

1

θ
(f(u + θv) − f(u))

Df(u) is the derivative of f at u.

Let ϕ be a scalar-valued function defined on the set S invertible tensors A ∈ L(U,U)
(i.e. ϕ : S → R) defined by

ϕ(A) = detA

Show that (it is sufficient to consider the 3D case)

Dϕ(A) : V = (detA)VT : A−1

Hint: Note that

det(A + θV) = det((I + θVA−1)A)

= detAdet(I + θVA−1)

and that

det(I + θB) = 1 + θ tr B + 0(θ2)

7. Let Ω be an open set in R
3 and ϕ be a smooth function mapping Ω into R. The vector

g with the property

Dϕ(x ) · v = g(x ) · v ∀v ∈ R
3

is the gradient of v at point x ∈ Ω. We use the classical notation,

g(x ) = ∇ϕ(x )
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Show that

∇(ϕv) = ϕ∇v + v⊗∇ϕ
div(ϕv) = ϕ div v + v · ∇ϕ

div(v ⊗ w) = v div w + (∇v)w

8. Let ϕ and u be C2 scalar and vector fields. Show that

(a) curl ∇ϕ = 0

(b) div curl v = 0

9. Let Ω be an open, connected, smooth domain in R
3 with boundary ∂Ω. Let n be a

unit exterior normal to ∂Ω. Recall the Green (divergence) theorem,1

∫

Ω
div v dx =

∫

∂Ω
v · n dA

for a vector field v. Show that
∫

Ω
div A dx =

∫

∂Ω
An dA

Hint: Note that for arbitrary vector u,

u ·
∫

∂Ω
An dA =

∫

∂Ω
(ATu) · n dA

10. If (x, y, z) is a Cartesian coordinate system with origin at the corner of a cube Ω0 =
(0, 1)3 and axes along edges of the cube, compute

∫

∂Ω0

v · n dA0

where ∂Ω0 is the exterior surface of Ω0, n is the unit exterior normal vector, and v is
the field, v = xe1 + ye2 + 3ze3.

1div v = divergence of v = tr ∇v =
P

i
∂vi/∂xi if v =

P

i
viei div A is the unique vector field such that

div A · a = div(AT
a) for all vector a.
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Assignment 3

1. The cube (0, a)3 is the reference configuration Ω0 of a body subjected to “simple
shear”

u1 =
∆

a
X2, u2 = u3 = 0 , ∆ = constant

The unit exterior normal to ∂Ω0 is n0. The vector n0 at boundary point (a, a/2, a/2) is
mapped into the unit exterior normal n on ∂Ωt. Compute n and sketch the deformed
body.

2. Suppose ∆ in Problem 1 above is a function of time t. Compute

(a) the Lagrangian description of the velocity and acceleration fields,

(b) the Eulerian descriptions of these fields,

(c) L = grad v.

3. Show that Wv = 1
2ω × v

4. Suppose that at a material point X ∈ Ω0, the Green Strain tensor is given by

E =
∑

1≤i,j≤3

[Eij ] ei ⊗ ej

where {ei} is an orthonormal basis in R
3 and

[Eij ] =




3

√
2 0√

2 2 0
0 0 1





Determine:

(a) the principal directions of E,

(b) the principal values of E,

(c) the transformation Q that maps {ei} into the vectors defining the principal
directions of E,

(d) the principal invariants of C = 2E + I.

5. Recall that an invariant of C is any real-valued function µ(C) such that µ(C) =
µ(A−1CA) for all invertible matrices A. Show that tr C, tr Cof C, and det C are
invariants of C.

6. Construct a detailed proof of the relations

(a) Wv =
1

2
ω × v, where ω = curl v

(b) ˙detF = detF div v
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Assignment 4

1. Reproduce the proof of Cauchy’s Theorem for the existence of the stress tensor for
the two-dimensional case (“plane stress”) (to simplify geometric issues). Thus, for
σ(n) = σ1(n)e1 + σ2(n)e2, show that ∃T such that σ(n) = Tn.

2. The Cauchy stress tensor in a body B is

T(x , t) = Tij(x , t) ei ⊗ ej

where

Tij(x , t) = e10−10t




10000x2

1 − 7000x1x2 7000x1x3 2000x2
3

7000x1x3 3000x2
2 100x1

2000x2
3 100x1 1000x2

3





(a) At point x = (1, 1, 1) at time t = 1, compute the stress vector σ(n) in the
direction n = niei, ni = 1/

√
3, i = 1, 2, 3.

(b) At t = 1, what is the total contact force on the plane surface x1 = 1, 0 ≤ x2 ≤ 1,
0 ≤ x3 ≤ 1?

3. Let T = T(x , t) be the Cauchy stress at x ∈ Ωt at time t. If n̂ is a direction (a unit
vector) such that

Tn̂ = σn̂ (n̂T n̂ = 1)

then (in analogy with principal values and directions of C), σ is a principal stress and
n̂ is a principal direction of T (eigenvalues and eigenvectors of T).

Continuing, let Γ be a plane through a point x with unit normal n. The normal stress
σn at x is

σn = (n ·Tn)n

and the shear stress is

σt = Tn− σn = Tn− (n ·Tn)n

Show that if n were a principal direction of T, then σt = 0.

4. Newton’s Law of action and reaction asserts that for each x ∈ Ω̄t and each t,

σ(n,x , t) = −σ(−n,x , t)

Prove this law under the same assumptions as Cauchy’s theorem.
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Figure 9.2: Tetrahedral element.

Hint:

(a) Construct the tetrahedral element as shown in Fig. 9.2.

(b) Compute total forces on tetrahedral element:

1

Aδ

∫

Ad

σ(m) dA+
1

Adi

∫

Adi

σ(−ei)dA+ body force O(d3)

(c) Take limit as d→ 0; giving σ(n,x , t) = −∑3
i=1(m · ei)σ(−ei,x , t)

(d) Take m = e1, then m = e2, then m = e3 to establish that σ(ei,x ) = −σ(−ei,x )
(for any t). Then the assertion follows.

(e) Complete the proof of Cauchy’s Theorem: Show T(x ) = T(x )T . (This proof
makes use of 1) the principle of balance of angular momentum, and 2) the equa-
tions of motion (div T + f = ̺ dv/dt)).
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Assignment 5

1. Let Γ be a material surface associated with the reference configuration: Γ ⊂ ∂Ωt. Let
g be an applied force per unit area acting on Γ(g = g(x , t),x ∈ Γ). The “traction”
boundary condition on Γ at each x ∈ Γ is

Tn = g

Show that

FSn0 = g0 on ϕ−1(Γ)

where n0 is the unit exterior normal to Γ0 (Γ = ϕ(Γ0)) and

g0(X, t) = detF(X)‖F−T (X)n0‖ g(x )

2. Consider an Eulerian description of the flow of a fluid in a region of R
3. The flow

is characterized by the triple (v, ̺,T) = (velocity field, density field, Cauchy stress
field). The flow is said to be potential if the velocity is derivable as the gradient of a
scalar field ϕ:

v = grad ϕ

The body force field acting on the fluid is said to be conservative if there is also a
potential U such that

f = −̺ grad U

The special case in which the stress T is of the form

T = −p I

where p is a scalar field and I is the unit tensor, is called a pressure field (p = the
fluid pressure or “hydrostatic” pressure).

(a) Show that for potential flow, a pressure field T = p I, and conservative body
forces, the momentum equations imply that

grad

(
∂ϕ

∂t
+

1

2
v · v + U

)
+

1

̺
grad p = 0

This is Bernoulli’s Equation for potential flow.

Hint: show that

1) div T = −grad p,

2) dv/dt = ∂v/∂t+ 1
2 grad v · v
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(b) If the motion is steady (i.e. if ∂v/∂t = 0, (v(x , t) is invariant with respect to
t)), and ∂f/∂t = 0, so ∂U/∂t = 0, then the equations of part (a) reduce to

v · grad
(

1

2
v · v + U

)
+

1

̺
v · grad v = 0

(Notice that v · dv/dt = v · grad(1
2 v · v)).

3. Let u = u(X, t) = ϕ(X, t) − X be the displacement field. Define the quantity

ψ =
1

2

∫

Ω0

̺0u · u dX

Show that (if f0 = 0),

ψ̈ =

∫

Ω0

̺0u̇ · u̇ dX −
∫

Ω0

P : ∇u dX +

∫

∂Ω0

u · Pn0 dA0

4. A cylindrical rubber plug 1 cm in diameter and 1 cm long (see Fig. 9.3) is glued to a
rigid foundation. Then it is pulled by external forces so that the flat cylindrical upper
face Γ0 = {(X1,X2,X3) : X3 = 1, (X2

1 +X2
2 )1/2 ≤ 1/2} is squeezed to a flat circular

face Γ of diameter 1/4 cm with normal n = e2, as shown at position x = x ∗. Suppose
that the stress vector at x = x ∗ is uniform and normal to Γ:

σ(n,x ∗) = σ(e2,x
∗) = 1000 e2 kg/cm2

x ∗ ∈ Γ

Suppose that the corresponding Piola-Kirchhoff stress p0 = Pn0 is uniform on Γ0

and normal to Γ0.

(a) Determine the Piola-Kirchhoff stress vector p0 = Pn0 on Γ0.

(b) Determine one possible tensor Cof F(X1,X2, 1) for this situation.
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Figure 9.3: Illustrative sketch for question 4 of assignment 5.
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